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ABSTRACT

Network attacks and anomalies such as DDoS attacks, service outages, email spam-

ming are happening everyday, causing various problems for users such as financial loss,

inconvenience due to service unavailability, personal information leakage and so on. Dif-

ferent methods have been studied and developed to tackle these network attacks, and

among them data streaming algorithms are quite powerful, useful and flexible schemes

that have many applications in network attack detection and identification. Data stream-

ing algorithms usually use limited space to store aggregated information and report cer-

tain properties of the traffic in short and constant time.

There are several challenges for designing data streaming algorithms. Firstly, network

traffic is usually distributed and monitored at different locations, and it is often desirable

to aggregate the distributed monitoring information together to detect attacks which

might be low-profile at a single location; thus data streaming algorithms have to support

data merging without loss of information. Secondly, network traffic is usually in high-

speed and large-volume; data streaming algorithms have to process data fast and smart

to save space and time. Thirdly, sometimes only detection is not useful enough and

identification of targets make more sense, in which case data streaming algorithms have

to be concise and reversible.

In this dissertation, we study three different types of data streaming algorithms:

hot item identification, distinct element counting and superspreader identification. We

propose new algorithms to solve these problems and evaluate them with both theoretical

analysis and experiments to show their effectiveness and improvements upon previous

methods.
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CHAPTER 1. OVERVIEW

1.1 Motivations

1.1.1 Network Attacks and Anomalies

Computer network has become an important part of people’s life in the near decades.

There are countless examples that people make use of the computer network to support

and enjoy their everyday life: companies run their business over the network; customers

use it to purchase services and merchandise without walking out of their doors; people

share their experience and ideas on social network websites. However, together with

the flourishing of the computer network, related security issues have also mushroomed:

(D)DoS attacks, worm/virus spreading, email spamming, service outages, and botnets,

to name a few of them.

• Distributed Denial of Service (DDoS) attacks are used by malicious parties to

flood victim’s network service to make it unavailable to intended users, and now

are also used as smokescreen to steal customer data or intellectual properties 201

(b). On average 28 DDoS attacks happen every hour in 2013 according to a report

201 (c) and cost companies considerable amounts of money each year.

• Service outage is sometimes caused by outside attacks such as DDoS and some-

times the inside software or hardware problems. It would render network services

unavailable to the intended users and cause financial loss. An example is the service

outages of Amazon’s Cloud Service AWS which bring down a portion of clients’
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business services and make them suffer from losing revenue and customer faith

everytime it happens.

• Worm Spreading usually starts from one or several source(s) and expands to

a large scale of hosts in the network very quickly. Each infected host will try

to connect to other hosts to spread the worm as quickly as possible to consume

network bandwidth or corrupt files on computers.

1.1.2 Countermeasures

Various kinds of methods have been developed to detect and defend against different

network attacks and anomalies. The basic idea is that network traffic could be monitored

to capture multiple features or patterns, and then models, signatures or basic profiles of

the traffic could be created based on these observations, which would be used as baselines

to detect attacks and anomalies that may behave differently from the baselines.

Traditional Firewalls are used by network administrators to filter network traffic

coming into and going out of their network by comparing signatures of the packets,

to detect worms, malwares, port-based DoS attacks, illegal connections and other anti-

rule packets. However, firewalls are not very useful for detecting DDoS attacks, service

outages and so on, because they are not designed for such attacks and anomalies involving

a large number of parties 201 (a).

Network monitoring tools such as NetFlow are used on routers to collect IP network

traffic flowing through them. Such tools usually aggregate IP packets into flows at each

router and then export them to a central collector or monitoring center for processing,

analyzing, and profiling. Such tools are the first defensive line to detect attacks such

as DDoS and worm spreading, since they have access to the traffic that is just sent out

by the malicious parties. However, there are two major problems with such monitoring

tools. One problem is that they keep logs of traffic data at monitoring center which

often cost huge communication overhead to transmit, large amount of space to store and
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Figure 1.1 The time series of number of distinct destination IP addresses of the
packets in each sub-net during the breakout of the witty worm.

a relatively long time to analyze. Another problem is that they usually use sampling

techniques to reduce the load of data to be collected and analyze the sampled data

regardless of their importance, which may result in biased and not accurate results.

In the near decades, data streaming algorithms have been proposed to help detect

network attacks and anomalies. The idea is that network traffic could be modelled as

data streams, and different features of the traffic could be captured and maintained in

low cost of space as well as time, while estimated with high accuracy by data streaming

algorithms. For example, in figure 1.1 each line represents the time series of cardinalities

of the destination IP addresses in the packets sent from the hosts in the corresponding

source IP group during the breakout of the Witty worm. We can see that each line shows

a sudden increase from zero to several hundred or even thousand which is caused by the

large number of random connections from the infected hosts in those small groups of

source IPs. In this example, the network packets going through network monitors could

be modelled as data streams; the feature we want to capture here is the cardinality of

destination IP addresses for each source IP address. Since there are very possibly more

than one network monitors and thus distributed data streams, we want to calculate the

features locally at each monitor and then gather the aggregated compact information at

a central location to get the final results.
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Data streaming algorithms overcome the shortcomings of some network monitoring

tools. They consume less space and time which is a key feature that makes them suitable

for high-speed network traffic monitoring. They analyze the whole traffic and target

the most important information related to specific problems, and produce reliable and

accurate estimation results, while sampling techniques usually work on a small portion

of the traffic which may lead to biased results.

There are different data streaming problems that have been studied by researchers,

such as hot items/heavy hitters, superspreaders, distinct elements counting, dynamic

membership querying, trend detection, and so on, which are often used for different

network traffic monitoring purposes. For example, elephant flows that take up a large

portion of network bandwidth are monitored to detect DDoS attacks and control quality

of services. Elephant flows can be modelled as hot items in data streams that have very

high frequencies and identified by hot item identification algorithms. Another example

is the service outage detection which could be modelled as distinct element counting

problem that used to detect DDoS attacks and monitor quality of service by network

providers.

In this dissertation, we study three of the data streaming problems: hot item iden-

tification, distinct element counting and superspreader detection. We propose several

algorithms and frameworks to resolve these problems in distributed and dynamic data

streams, using combined techniques and small-size data structures which allow fast pro-

cess. We use theoretical analysis and experimental evaluations to show that our algo-

rithms introduce less overhead and improve upon previous data streaming algorithms in

terms of space and time cost, as well as accuracy.
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1.2 Challenges

There are several challenges for designing data streaming algorithms to defend against

network attacks and anomalies.

• Firstly, the huge amount and high speed of Internet traffic put constraints on the

space and time costs of the detection methods. Data streaming algorithms have to

process data fast (in wire speed) and smart to save space and time. Saving data

in disk is not tolerable and algorithms that could fit in memory is the minimum

requirement. With constraints on space and time, estimation instead of exact

computation is the most efficient technique and the accuracy of estimations is

another challenge.

• Secondly, network traffic is usually distributed and monitored at different loca-

tions, and it is often desirable to aggregate the distributed monitoring information

together to detect attacks which might be low-profile at a single location; thus data

streaming algorithms may have to support information merging at low communi-

cation and processing costs without loss of accuracy.

• Thirdly, sometimes only detection is not useful enough and identification of targets

make more sense, in which case data streaming algorithms have to be concise

and reversible. Data streaming algorithm usually uses compact data structures to

represent aggregated information of data which obscures the original identities and

it is hard to maintain or recover these original identities of the targets.
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CHAPTER 2. PRELIMINARIES

2.1 Data Streaming Models

A general data stream S is a series of data items in the following format:

(x1, v1), (x2, v2), . . . , (xi, vi), . . .

where xi is the identifier (ID) of the ith item and vi is an update of the item’s value.

All the IDs of the items belong to a universe U with size |U| = N , and without loss

of generality we suppose any ID xi ∈ [0, N − 1]. Value vi is usually integer values in

a certain field. An example is that when monitoring the flow sizes sent from different

hosts, the IDs would be the source IP addresses in the IP packet and the values would

be the packet sizes which are always positive.

According to the ranges of the items’ values, data stream models can be categorized

into two different types:

• Insertion-only Model. In this model, the values of items can only be positive.

A special case is that values are always 1. This model is sometimes referred to cash

register model Gilbert et al. (2001).

• Dynamic Model. In this model, the values of items can be either positive or

negative. And this model is sometimes referred to turnstile model.

Whether it is to count the number of distinct elements or to identify hot items in the

data stream, the algorithm would be very simple if we have enough space and time to
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store all the information of the data stream. However, this is often neither practical nor

efficient. So we are interested in developing data streaming algorithms which are often

probabilistic and use small space as well as running time to approximate the values we

want with guaranteed low error and high success probability. The goals of data stream

algorithms are formally defined as follows:

Definition 1. Let f(S) be the value we want to calculate on data stream S, given expected

error bound 0 < ε < 1 and failure probability 0 < δ < 1, a data streaming algorithm would

give an approximate result f̃(S) satisfying

||f(S)− f̃(S)|| ≤ ε||f(S)|| (2.1)

with probability at least 1 − δ, using space O(poly(1
ε
, log 1

δ
, logN, logw)) and expected

updating time O(1).

2.2 Basic Techniques

We review some basic techniques that are often used in data streaming algorithms to

reduce data size and extract important information from data streams that usually have

very large size and often require fast processing. Many of the techniques below are also

used by our approaches in the following chapters to solve different types of problems.

2.2.1 Normalization and Randomization

The distribution of the real world data is not predictable and may change over time,

so it is not realistic to cast the data into a fixed model. When monitoring and analyzing

the traffic, one technique to simplify the data is normalization. By normalization, here

we mean applying some random mapping on the data such that the resulted data would

have a uniform distribution over the mapped field and it would become easier to apply

statistical analysis on the mapped data.
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Universal hash functions Carter and N.Wegman (1979) are good tools for data nor-

malization because they are easy to implement and have good performance on random-

ization and anti-collisions. Pairwise independent hash functions are required by some

algorithms to guarantee that the randomization is uniform, which means that all hash

values are equally likely.

2.2.2 Sampling

The incredible size of network traffic also makes analysis more difficult in terms of

time, space and complexity. To mitigate this, sampling is a quite powerful technique

which could reduce the burden of heavy computation and at the same time remove

unrelated or less-important information from the data. The basic sampling scheme is

fixed rate sampling: for each data item, toss a biased coin to determine if it would be

sampled or not. For example, for hot item identification, we could use fixed sampling

rate α to sample and keep the items and those elements whose frequency is larger than

α would very likely be sampled and thus identified.

Sometimes, distinct sampling would be more efficient when we care more about the

number of distinct elements rather than their frequencies, such as distinct element count-

ing and superspreader detection. Distinct sampling means we sample the distinct ele-

ments using a fixed rate, regardless of how frequently it appears. This could be modeled

as sampling over a set of distinct elements. The classic method for distinct sampling is

firstly proposed in Flajolet and Martin (1985) where each element is randomly mapped

to a binary string and sampled according to its binary representation: if the sampling

rate is 1
2r

then an element would be sampled if its least significant bit is the r-bit from

the left. This method is very powerful because its sampling rate is closely related to the

representation of the item and we could adapt/reduce the sampling rate if the size of the

distinct element set increases.
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2.2.3 Sketching

Sketching refers to data structures that usually uses hash functions to randomize

data and stores aggregated information of the data in compact space. Because sketches

are usually space-efficient and fast to update, they are suitable for applications where

distributed systems need to share information in an time-and-space efficient way. The

famous sketches would be the different variations of Bloom filters and the count-min

sketch.

A Bloom filter is a compact bit array which represents a set of distinct elements and

supports membership queries: to answer the question that if an element is in the set

or not with low false positive error rate and no false negative errors. A good survey of

Bloom filters is available in Broder et al. (2002). A generalization of basic Bloom filter

is the Counting Bloom filter which is proposed in Fan et al. (2000) and extends the bit

array to an array of counters which supports both insertions and deletions of elements.

There are some other variations of Bloom filters such as Dynamic Bloom filters in Guo

et al. (2010) and Incremental Bloom filters in Hao et al. (2008) which works for dynamic

data streams whose size is not known in advance.

Another famous sketch is the count-min sketch which is proposed in Cormode and

Muthukrishnan (2005a). This is yet an extension of the Counting Bloom filter and use 2-

dimensional array of counters to represent the frequencies of elements. We apply similar

ideas in our approaches and use multi-dimensional counters to fit into different properties

of the problems.

2.2.4 Miscellaneous

2.2.4.1 Balls-and-bins Model

Balls-and-bins model is a probabilistic model that enables estimating number of dis-

tinct elements in an efficient way. This model says that when randomly throwing A balls
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into K bins where A < K, the probability of collisions of balls in a bin is very low, the

variance of number of non-empty bins is bounded and small, and we could use the ex-

pected value of non-empty bins to estimate the number of distinct elements. This model

is elegant when combined with the adaptive distinct sampling method to estimate the

number of distinct elements in a large data stream, because adaptive distinct sampling

could give us a small set of sampled distinct balls whose size is always bounded and we

do not have to change the bins when the size of the real data set grows. The random

throwing of balls could be modeled by pairwise independent hash functions.

2.2.4.2 Group Testing

Group testing is a procedure to identify a small part of a set which have certain

properties that are different from other elements of the set, by testing on subsets instead

of testing each individual element. Group testing fits into problems such as hot item

identification and superspreader identification where the top-K elements are our targets

and have different properties from the remaining elements: the hot items have higher

frequencies than other non-hot items and superspreaders have larger size of cardinalities

than others.

It is usually easy to identify if there is only one ”particular” item within the set

that has different property from others, and it becomes more difficult if there are more

than one. In the later case, we could use divide-and-conquer principle to break down

the problem further: randomly divide the whole set into several subsets and hope each

subset will contain at most one ”particular” item such that we can do group testing on

each subset to find out the ”particular” item if there is one.
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CHAPTER 3. HOT ITEM IDENTIFICATION

3.1 Introduction

In this chapter, we will study the problem of detecting and identifying hot items

in data streams. An item is defined as hot if its aggregated value takes larger than

a threshold portion of the total value of all the items in the traffic. For example, in

an IP packet stream going through a router, the items could be defined as the source

IPs and the values of items could be the packet sizes; a hot item would be a source IP

whose total packet size is larger than 1
k+1

of the total packet size passing through the

router. Hot items are also referred to as heavy hitters or icebergs in some papers and

they have been found useful for detecting DDoS attacks Ayres et al. (2006), discovering

worms Cheetancheri et al. (2007), finding frequently accessed content in Content Delivery

Networks and P2P systemsLi and Lee (2008).

There are two different cases to be considered when solving the problem of identifying

hot items in network traffic. One case is that we have a single monitor node and we only

have to monitor a single data stream with is going through this monitor. The other

case is that we have multiple distributed monitor nodes and each of them monitors a

data stream. In the later case, usually the data in the multiple data streams have to be

combined together to get the final answers.

Space and time constraints are two challenges for us to design solutions to the problem

of identifying hot items in network traffic streams. The network traffic goes through

network monitoring nodes at a very fast speed, for example, a router’s throughput can
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be several Gbps. It is not realistic to store all the data in to disks and analyze them later.

Usually sampling or sketching, which uses much smaller space and processing time, is

used to keep a summary of the original data and estimate some statistics of the original

data. However, using summaries of data to estimate the original data means that we may

generate estimation errors. So how to reduce the errors is another challenge for sampling

and sketching based methods. In some monitoring applications, we need methods which

can process data (nearly) on-line and report network anomalies in a timely manner. In

such cases, data structures that can fit into memory and algorithms that can process

data on-line are preferred.

The literature on the problem of identifying hot items is rich. In the single data

stream case, there have been a bunch of work done to identify hot items and they can be

roughly separated into two categories: counter-based algorithms such as FREQUENT al-

gorithm in MISRA and GRIES (1982), LossyCounting algorithm in Manku and Motwani

(2002), SpaceSaving algorithm in Metwally et al. (2005); sketch-based algorithms such

as Count sketch in Charikar et al. (2002), Count-Min sketch in Cormode and Muthukr-

ishnan (2005a), Group Testing based sketch in Cormode and Muthukrishnan (2005b). In

multiple data streams case, there are also some work in recent years trying to solve the

problem by either using gossip-based algorithms Jelasity et al. (2005)Sacha and Mon-

tresor (2013) or combining sampling and sketch together Zhao et al. (2006)Zhao et al.

(2010)Huang et al. (2011).

Most of the above mentioned methods have their own short-comings. For example,

counter-based methods can only work for data streams whose items’ values are positive

only and they will generate both false positives and false negatives; most of the sketch-

based algorithms need a time-consuming recovery process to recover the identities of the

hot items because the sketches only maintain the information of aggregated values but

not the item IDs; gossip-based algorithms need large space and time overhead at each

monitor node to maintain the information of local items; the space and time costs of
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sampling-based algorithms heavily depend on the distributions and sizes of data streams

and are not stable.

We propose a method to detect and identify hot items in either a single data stream

or multiple distributed data streams with the following guarantees:

1. go over the whole data streams only once and identify all the hot items with high

probability and low false positive rate;

2. use small constant space and updating time at each data node to maintain the

information of the local data stream;

3. need small communication overhead to merge the information from all the dis-

tributed data nodes;

4. identify hot items in distributed data streams using small space and time;

5. run faster and generate less false positives and false negatives than previous meth-

ods.

3.2 Related Work

3.2.1 Hot Items in Single Data Stream

There has been a lot of work done on finding hot items in a single data stream

and many of them can be found in the survey Cormode and Hadjieleftheriou (2010).

These methods could be categorised into two types: counter-based methods and sketch-

based methods. Counter-based methods such as MISRA and GRIES (1982)Demaine

et al. (2002)Manku and Motwani (2002) Metwally et al. (2005) use a fixed amount of

counters, as a summary of the data stream, to maintain the hot items deterministically

and can report the hot items with bounded error. Although counter-based methods

use small space, usually within 1MB, they can only handle incremental data streams,
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which contain only positive update values. If the data stream is dynamic, which means

that it contains both positive and negative update values, then counter-based methods

will become short-sighted and mis-classify some non-hot items, which are hot at the

beginning of the data stream and not hot at the end of it, as hot.

Sketch-based methods such as Count-Min Cormode and Muthukrishnan (2005a),

Count-SketchCharikar et al. (2002), Group-Testing-based-Sketch Cormode and Muthukr-

ishnan (2005b) use random projections based on hash functions to maintain aggregated

information of all the items’ update values. For recovering the identities of the hot items,

some of them such as Count-Min and Count-Sketch have to use an additional heap-like

data structure to maintain the current hot items in order to save recovery time, oth-

erwise they have to go through each possible item ID and query the data structure to

estimate its frequency. However, in such cases, these methods cannot handle dynamic

data streams. To the best of our knowledge, the Group-Testing-based-Sketch in Cormode

and Muthukrishnan (2005b) gives the best sketch-based method for identifying hot items

in a single dynamic data stream in terms of space, update time and recovery time.

3.2.2 Hot Items in Distributed Data Streams

When the update values of items are distributed in multiple separated data streams,

the local maintenance cost at each data node and the communication cost for merging the

information maintained at each data node to identify the hot items have to be considered.

Some of the methods for single data stream can be extended to solve the problem.

It has been shown in Berinde et al. (2009) that for counter-based methods, counter-

summaries of distributed data streams can be merged together at a center node to gen-

erate a counter-summary of the union of the data streams, providing that the counter-

summary for each single stream uses a large enough number of counters to guarantee the

error bounds. Both the local calculation cost and the data communication cost are low

for such extended methods. However they cannot handle dynamic data streams due to
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the nature of counter-based methods: the counters are monotonous and are not able to

track the dynamic changes in the data streams.

For sketch-based methods, the nature of the sketches allows them to be combined

together to create a new sketch for the union of multiple data streams. For example,

the Group-Testing-based-Sketch in Cormode and Muthukrishnan (2005b) uses a two

dimensional array of counters and each counter calculates the summation of values of

those items who are mapped to this counter. So when there are multiple data streams

and corresponding sketches, if they use the same projections, i.e. hash functions, then

we could summing up the counters from the multiple sketches to create a new sketch for

the union of the data streams.

Recently several methods have been proposed to identify hot items in multiple dis-

tributed data streams. Some of them Jelasity et al. (2005)Sacha and Montresor (2013)

are based on the idea of gossip algorithm. In gossip algorithm, each data node uses

counter-based method to locally maintain a list of items with high local frequencies, and

gossip with their neighbours to exchange information of their top-listed items; after mul-

tiple rounds of gossiping, the information will converge to generate a same list of global

hot items at each node. Such gossip algorithms do not require a center node, however

they need multiple rounds of gossiping which involves a large communication overhead.

What’s more, the local usage of counter-based method limits such gossip algorithms to

be used only for incremental data streams.

Some other methods Zhao et al. (2006)Zhao et al. (2010)Huang et al. (2011) combines

sampling and sketches locally which samples the items with a constant probability and

maintains a sketch to estimate the aggregate values for the sampled items, and the

sampled items as well as the sketch are sent to a central node to be combined together

for global hot item identification or detection. These methods have some drawbacks:

firstly they only work for incremental data streams; secondly the space usages are not

constant and heavily depend on the data stream. These drawbacks make them not
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desirable comparing to previously discussed extended counter-based and sketch-based

methods.

There have been some work done Li and Lee (2008)Gangam et al. (2013) to identify

hot items in distributed data streams exactly, without any false positives or false nega-

tives. The netFilter proposed in Li and Lee (2008) organizes the nodes in a hierarchical

way; at each node it separates the local items into disjoint groups using hash functions

and aggregates the values for each group; the groups’ aggregated values are sent from

the leaf nodes to the root node in the hierarchy to filter out candidate groups which

contain hot items; then the root node will send back the candidate group information to

all the other nodes; in a second round, each node will find out local items that are in the

candidate groups and aggregate them at the root node to finally identify true hot items.

The Pegasus system proposed in Gangam et al. (2013) uses the similar idea as Li and

Lee (2008). The problem with these methods is that they need each node to maintain

all the local items and their exact values and will go through these data multiple times,

which involves large space and time overhead locally.

3.2.3 Group Testing

Group testing techniques have been used to identify hot items in data streams. The

sketch-based method used in Cormode and Muthukrishnan (2005b) is based on the idea

of group testing. It separates all the items into 2k groups and in each group it further

divides the group into multiple subgroups and does tests on these subgroups to see if

it contains a hot item; if there is one and only one hot item in a group, then the test

results can be used to recover the ID of this hot item. By separating the item set several

times with different separating ways, all the hot items can be identified with very high

probability. In this method, when it separates the item set into 2k groups, there will be

at least k groups that contain none of the hot items and these groups will not be useful

for identifying hot items, which is a waste of space. In this chapter, we propose a new
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separating scheme to reduce such waste of space, and show how to choose parameters to

improve the accuracy and balance space and time according to application requirements.

There are existing non-adaptive group testing algorithms that can be used to identify

hot items from a set of items, however the decoding time of these algorithms does not

allow them to be practically used. In Indyk et al. (2010) a new decodable non-adaptive

group testing algorithm is proposed which significantly decrease the decoding time. How-

ever, it still cannot beat the method used in Cormode and Muthukrishnan (2005b) in

terms of hot item recovery time.

3.3 Problem Definition

In this section, we define the problem of identifying hot items in multiple distributed

data streams. There are N dynamic data streams S1, S2, . . . , SN , and each of them is a

sequence of pairs in the following format:

(x1, v1), (x2, v2), . . . , (xi, vi), . . .

where xi is the identifier (ID) of an item and vi is an update of the item’s value. All the

IDs of the items belong to a universe U with size |U | = m, and without loss of generality

we suppose for any ID xi ∈ [0,m− 1]. Value vi can be positive or negative integers.

In a single data stream S, the net value n(x) of an item x is defined as the summation

of all the updates of values for this item:

n(x) =
∑

(xi,vi)∈S∧xi=x
vi. (3.1)

If an item y never appears in the data stream S, then its net value n(y) = 0. We assume

that for each item which appears in the data stream, its net value is non-negative. The

frequency of an item x in data stream S is defined as

f(x) =
n(x)∑m−1
i=0 n(i)

. (3.2)
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From the definition, we can see that the summation of frequencies of all the items is 1:∑m−1
i=0 f(i) = 1.

Given a parameter k, an item x in a single data stream S is a hot item if its frequency

is larger than the threshold 1
k+1

, that is, f(x) > 1
k+1

. We can see that there are at most

k hot items in S. If there are multiple data streams and the updates of values for a

certain item could be distributed in these multiple data streams, then we can combine

the multiple data streams together to get a single data stream, and the definition of hot

items in these multiple data streams will be similar to that in a single data stream.

We want to give a solution to the problem of identifying the IDs of hot items in a

single or multiple dynamic data streams with success probability 1 − δ, where δ is a

pre-selected parameter, with small space, update time and ID recovery time.

Table 3.1 Notations for Hot Item Identification

Notation Meaning

U universe of the item’s identifier
m size of the universe U
N number of data streams
k parameter of a threshold to determine if an item is hot or not
δ upper bound of the fail probability of recovering all the hot items , between 0 and 1
L number of layers(subgroups) used in the algorithm
T number of hash functions used in the algorithm
d tunable positive parameter to determine the value of L and T

3.4 Our Approach

We will first present our approach to identify hot items in a single data stream, and

then extend it to identify hot items in multiple data streams.

3.4.1 Identify One Hot Item

From paper Cormode and Muthukrishnan (2005b) , we know that if we have a set of

items where the frequency of one item is larger than the total frequency of other items,
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then it will be very easy to identify this hot item using O(logm) counters with one-pass

algorithm.

The idea of this method is as following. We use a counter C0 to calculate the total

values of all the items in the set. We divide the item set into logm subsets, and for

each subset we use a counter Ci to maintain the summation of the values of the items

in this subset. For each item i, it is assigned to the jth subset if its jth bit in its binary

representation is 1. In this way, for each subset we can determine if it contains a hot

item or not by comparing Ci with C0: if Ci ≥ C0

2
then it contains a hot item, since the

total frequency of all the items except the hot item is smaller than the frequency of the

hot item; otherwise not. By going through all the O(logm) counters, we can recover

each bit of the hot item and get the ID of the hot item.

3.4.2 Identify Multiple Hot Items

3.4.2.1 Basic Idea

The basic idea to identify multiple hot items is to divide the whole item set into L

subgroups and at the same time we have to make sure the following event ξ1 happen

Event 1. for each hot item hot(i), there exists at least one subgroup g satisfying the

condition that the total frequency of the items except hot(i) in g is smaller than the

frequency threshold 1
k+1

.

The condition in event ξ1 described above indicates that only one of the hot items,

that is hot(i), is in subgroup g. If we can realize the above dividing procedure, then

for any hot item hot(i) we can always find a subgroup that contains only one hot item

hot(i), and we can identify it using the method given in 3.4.1.

An intuitive idea to realize the dividing procedure is to use a hash function that

randomly and uniformly assigns an item to one of the L subgroups. We hope that all the

hot items can be mapped to different subgroups, and there is no collision of hot items in
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each subgroup, that is, no two hot items are assigned to the same subgroup. If we know

as a prior the IDs of the hot items, then we can design a hash function that will generate

no collision; however we do not know. So there is possibility that two hot items will be

mapped to the same subgroup. From the balls-and-bins model, we know that the larger

L is, the smaller the possibility of collision is. Of course, L should be no smaller than k

according to the Pigeonhole principle, where k is the upper bound of the number of hot

items.

We also notice that when L > k, if we only use one hash function, there would be

subgroups that do not contain any of the hot items, and these subgroups will be wasted.

In order to utilize these wasted subgroups, we can use more hash functions to divide the

item set repeatedly. We can use T (T > 1) different hash functions and assign each item

to T subgroups. In this case, we hope that two hot items which are mapped to a same

subgroup under a hash function will be mapped to other two different subgroups under

another hash function. On the other hand, when using T hash functions, there is also

possibility that two hot items would be mapped to a same subgroup by two different

hash functions.

Based on the above observations, we have to consider how to select the parameters

L and T , to make the event ξ1 happen with a high probability 1 − δ and at the same

time keep L and T small. We will use theoretical analysis to show how to choose L and

T in next section.

3.4.3 Detailed Algorithm

The pseudo code of our algorithm is given in figure 3.1,3.2,3.3,3.4. The detailed

description of the algorithm is given below.

Initialize Data Structure. We use L subgroups and each subgroup is represented

by a one-dimensional array of logm+ 1 counters. These counters are all initialized to 0.

We independently pick T hash functions from the pair-wise independent hash function
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1: INITIALIZATION():

2: Set L← 2d

d
k log k

δ
, T ← 1

d
log k

δ
.

3: Set counters C[0, . . . , L− 1][0, . . . , logm]← 0.
4: Randomly select T hash functions h[1, ..., T ] from pair-wise independent hash func-

tion family H2(P,L).
5: Set sum← 0.
6: Set X ← ∅.

Figure 3.1 Pseudo code for initializing the algo-
rithm. d, k, δ are all pre-selected pa-
rameters.

1: UPDATEITEM(x, v):
2: Set sum← sum+ v.
3: for i = 1 to T do
4: Set g ← h[i](x).
5: C[g][0]← C[g][0] + v.
6: for j = 1 to logm do
7: if jth bit of x is 1 then
8: Set C[g][j]← C[g][j] + v.
9: end if

10: end for
11: end for

Figure 3.2 Pseudo code for updating an item.
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1: RECOVER():
2: Set θ = sum

k+1
.

3: for i = 1 to L do
4: if C[i][0] > θ then
5: Set x← 0, r ← 1.
6: for j = 1 to logm do
7: if C[i][j] > θ then
8: if C[i][0]− C[i][j] > θ then
9: Continue to next i

10: end if
11: x← x+ r
12: end if
13: r ← r × 2.
14: end for
15: Add x to X .
16: end if
17: end for

Figure 3.3 Pseudo code for recovering hot items.

1: REMOVEFP():
2: for all x ∈ X do
3: for i = 1 to T do
4: if C[h[i](x)][0] ≤ θ then
5: Delete x from X .
6: end if
7: end for
8: end for

Figure 3.4 Pseudo code for removing false posi-
tives.
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family H2(P,L) Carter and Wegman (1979). Each hash function in H2(P,L) takes the

form, h(x) = (ax + b) mod P mod L, where P is a large prime number larger than

L, and a, b are randomly picked positive numbers smaller than P which guarantee the

randomness of the hash function. We use a counter sum to maintain the total values

of all the items’ updates, which is initialized to 0. The hot item candidate set X is

initialized to empty.

Update An Item. When a new update (x, v) arrives, we first add the value v to

the total count sum. Then we will use the T hash functions to find T subgroups for

x which corresponds to T one-dim arrays of counters. In each one-dim array, the first

counter calculates the summations of values of the items in this subgroup; the remaining

logm counters calculates the summations of values of items in this subgroup whose

corresponding bit is 1.

Recover Hot Items. In the hot item recovery procedure, we first calculate the

threshold value θ = sum
k+1

, which means that any item whose total updates of values is

larger than θ is a hot item. To recover every possible hot item, we go through the

subgroups one by one. For each subgroup, if its first counter is larger than θ then it may

contain one hot item or more; otherwise we will skip this subgroup. When a subgroup

may contain one or more hot items, we will check further if it contains only one hot

item or more than one, and at the same time recover the hot item ID during the check

process using method in subsection 3.4.1. The check process for a certain subgroup g is

as follows: if there exists a counter C[g][i] > θ and C[g][0]−C[g][i] > θ, then there may

be two or more hot items in this subgroup, and we will not use this subgroup to recover

hot items.

Remove False Positives. There is possibility that in a subgroup which contains

only one of the hot items, the total frequency of the items except the hot item in this

subgroup is larger than 1
k+1

. If this case happens, then a counter in the subgroup may

be falsely set to a value larger than the threshold value θ and the recovered hot item ID
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would be wrong. In order to remove such false positives, for each recovered hot item ID,

we would find the T subgroups which it has been assigned to and check the first counter

in each subgroup. If all the T first counters are larger than θ, then we will report it as

a hot item; otherwise, we will not report it. Note that, after this false positive removing

procedure, there may still be some false positives in the reported hot items.

3.4.4 Distributed Algorithm

The algorithm described above is for identifying hot items in a single data stream.

When the value updates of an item is distributed in multiple data streams, the naive

method to identify hot items in these data streams is to combine the data stream together

into a single data stream and then use the algorithm above to go through this newly

generated single data stream just once and identify hot items in it. This method involves

large communication overhead if the multiple data streams are physically separated.

Observing that each instance of our data structure is a sketch of the data stream, merging

two instances of our data structure to create a new data structure will have the same

effect as merging two data streams into a single stream and create an instance of our

data structure on the single stream. The merging is correct given that

• the sizes of the data structures are the same and the hash functions used for each

data structure are the same;

• the counters at the same positions of the data structures are added together to

generate the counter in the new data structure at the same position.

3.5 Theoretical Analysis

3.5.1 How to choose T and L

Suppose a hot item is assigned to a subgroup, we are interested in the distribution of

the summation of frequencies of other items that are also assigned to this subgroup by



www.manaraa.com

25

all of the T hash functions, which could be modelled by the following random variables.

We define a random variable Xg
i,h as following:

Xg
i,h =


f(i) , if i is assigned to g by h

0 , otherwise
(3.3)

where i ∈ [0,m − 1] is an item, h ∈ [1, T ] is the hth hash function and g ∈ [0, L − 1] is

the gth subgroup.

We assume each hash function will assign each item to one of the L subgroups with

uniform probability 1
L

, so we can know Pr(Xg
i,h = f(i)) = 1

L
and Pr(Xg

i,h = 0) = 1− 1
L

.

The expectation of Xg
i,h would be

E[Xg
i,h] =

f(i)

L
(3.4)

Now consider a hot item hot(j) is assigned to the gth subgroup by one of the T hash

functions, we define

F g
i 6=hot(j) =

T∑
h=1

(
∑

i 6=hot(j)
Xg
i,h) (3.5)

then F g
i 6=hot(j) would be the total frequency of all the items in gth subgroup except hot(j).

Let c be a constant value and c > 1. According to Markov Inequality, we would have

Pr(F g
i 6=hot(j) > cE[F g

i 6=hot(j)]) <
1

c
. (3.6)

If we have

E[F g
i 6=hot(j)] <

1

c(k + 1)
(3.7)

then we will have

Pr(F g
i 6=hot(j) >

1

k + 1
) <

1

c
(3.8)

We can calculate the expectation of F g
i 6=hot(j) as following

E[F g
i 6=hot(j)] = E[

T∑
h=1

(
∑

i 6=hot(j)
Xg
i,h)] =

T∑
h=1

∑
i 6=hot(j)

E[Xg
i,h] (3.9)

=
T∑
h=1

∑
i 6=hot(j)

f(i)

L
=
T

L

∑
i 6=hot(j)

f(i) <
T

L
(1− 1

k + 1
).
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Let T
L

(1− 1
k+1

) ≤ 1
c(k+1)

, which means

T

L
≤ 1

ck
(3.10)

then we will have inequality 3.8. Notice that inequality 3.8 says that for a hot item that

is assigned to a certain subgroup by one of the hash functions, the probability of that

the summation of frequencies of all the other items in this subgroup is larger than the

threshold 1
k+1

is smaller than 1
c
, which means that the probability of fail on identifying

a hot item under one of the hash functions is smaller than 1
c
.

Since we independently choose the T hash functions, the probability of fail on iden-

tifying a hot item under T hash functions is smaller than (1
c
)T . By union bound, the

probability of fail on identifying any of the k hot items is smaller than k(1
c
)T . So the

probability of successfully identifying all the hot items is larger than 1− k(1
c
)T .

We are interested in how to set the value of L and T such that the fail bound δ can

be achieved and at the same time the space and time used are small. So let k(1
c
)T = δ,

then k
δ

= cT . Let c = 2d and d > 0, we can get T = 1
d

log k
δ
.

From inequality 3.10, we know that L ≥ ckT , so we can get L ≥ 2d

d
k log k

δ
. Since L

is the number of subgroups we have to maintain and the smaller L is the smaller space

we have to use, we will let L = 2d

d
k log k

δ
.

Lemma 1. The probability that our algorithm can identify all the hot items (up to k) by

using T = 1
d

log k
δ

hash functions and L = 2d

d
k log k

δ
subgroups, where d > 0, is at least

1− δ.

Proof. When there are exactly k hot items, then the correctness of this lemma can be

easily deduced from the analysis in this section. When there are less than k hot items,

the union bound will give us a even smaller probability of fail on identifying any of the

hot items, which means that the success probability of identifying all the hot items is

even higher than 1− δ.
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Now we have T = 1
d

log k
δ

and L = 2d

d
k log k

δ
, given that k and δ are pre-selected

parameters, we can tune the value of d to choose different pairs of T and L. We want

both T and L as small as possible since T decides how many hash functions to use

which determines the time cost and L decides how many subgroups to maintain which

determines the space cost. Observing that T decreases as d increases, while L first

decreases and then increases as d increases, there is a trade-off between the time cost

and space cost.

The method in paper Cormode and Muthukrishnan (2005b) uses log k
δ

hash functions

and 2k log k
δ

subgroups, which corresponds to d = 1 in our method. However, if we set

d = 2, we can use T = 1
2

log k
δ

hash functions and still L = 2k log k
δ

subgroups to achieve

the same success bound, which is an improvement on the time cost.

3.5.2 False Positives

Lemma 2. The expected number of false hot items that are generated by our algorithm

is smaller than k
d

log k
δ
.

Proof. Inequality 3.8 says that the probability of generating a false positive in a subgroup

which contains at least one hot item is less than 1
c
, where c > 1. Define a random variable

Yi, i ∈ [1, L] as following:

Yi =


1 , if subgroup i generates a false hot item

0 , otherwise
(3.11)

We separate the subgroups into two sets: one set denoted as Ghot which contains all the

subgroups that contain at least one hot item in it; the other set is denoted as Gnhot which

contains all the subgroups that do not contain any hot items. For a subgroup i ∈ Ghot,

we have Pr(Yi = 1) < 1
c
, Pr(Yi = 0) > 1 − 1

c
. For a subgroup j ∈ Gnhot, denote F j

x 6=hot

be the total frequency of all the items in the j subgroup, then similar as equation 3.5,
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we have

F j
x 6=hot =

T

L

∑
x 6=hot

f(x) (3.12)

Suppose we have at least one hot item in the data set, then we will have the expectation of

F j
x 6=hot the same as inequality 3.9, which will give us the same result that Pr(Yj = 1) < 1

c
,

Pr(Yj = 0) > 1− 1
c
.

Let random variable Y =
∑
i∈[1,L] Yi, then Y is the number of false positives that are

generated by our algorithm. We have

E[Y ] = E[
∑

i∈[1,L]
Yi] =

∑
i∈[1,L]

E[Yi] <
L

c
=
k

d
log

k

δ
(3.13)

So the expected number of false positives is fewer than k
d

log k
δ
.

The method in Cormode and Muthukrishnan (2005b) is an variation of our algo-

rithm under the case d = 1. We can see that under such condition, if we let d > 1 in

our algorithm, then we will generate fewer false positives. An intuitive explanation is as

following. Suppose there are totally M different item IDs, in Cormode and Muthukr-

ishnan (2005b) they assign all the items to 2k subgroups and in each subgroup there

are expected M
2k

distinct items. While in our algorithm, we assign M distinct items into

L = 2d

d
k log k

δ
subgroups. Although we will have T different assignments of M distinct

items, the expected items in each subgroup is MT
L

= M
2dk

. So if d > 1, we will have smaller

number of items in a subgroup. If the number of items in a subgroup is small, then the

probability of that the total frequency of the items in the subgroup is larger than the

threshold is smaller, so the probability of generating a false hot item is smaller.

3.5.3 Space and Time

Lemma 3. The space needed is O(2
d

d
k log k

δ
logm) machine words. The update time is

O(1
d

log k
δ

logm). The recovery time including the false positive removing procedure is

O(2
d

d
k log k

δ
(logm+ 1

d
log k

δ
)).
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Proof. Since we maintain L = 2d

d
k log k

δ
arrays and each array is composed of 1

d
log k

δ
+

1 counters. We assume each counter consumes a machine word, then we will need

2d

d
k log k

δ
logm machines words for all the counters. We additionally maintains a sum

counter and 2T values for T = 1
d

log k
δ

hash functions, so the total space we need is

O(2
d

d
k log k

δ
logm).

Suppose the calculation of a hash value needs O(1) time and a counter update needs

O(1) time. When updating an (item,value) pair, we need to calculate T hash values and

update upto T (logm+ 1) + 1 counters, so the total update time is O(1
d

log k
δ

logm).

During the hot item recovery procedure, we need to go through all the L subgroups

and check each counter in each subgroup, so we need L logm time. During the false

positive removing procedure, we will verify up to L candidate hot items and each ver-

ification will calculate T hash values and check T counters, so this step needs O(2TL)

time. Adding them together, we need O(2
d

d
k log k

δ
(logm + 1

d
log k

δ
)) time for recovering

hot items.

3.6 Performance Evaluation

In order to see the performance of our algorithm and the comparison with the al-

gorithm in Cormode and Muthukrishnan (2005b), we implemented both algorithms in

C++. For simplicity, from now on we will refer to our algorithm as OurAlgm and their

algorithm as WhatsHot. The evaluations are in terms of recall, precision and average

update time. The definitions of the three terms are as following.

• Recall: proportion of true hot items that are identified. This is related to false

negative. The smaller the number of false negatives is, the higher the recall is and

the better the algorithm is. Recall is always between 0 and 1, including both sides.

• Precision: proportion of the hot items identified by the algorithm that are true hot

items. This is related to false positives. The smaller the number of false positives
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Figure 3.5 Comparing recall and precision of WhatsHot and OurAlgm using same
space but different numbers of hash functions. Synthetic data are used.

is, the higher the precision is and the better the algorithm is. Precision is always

between 0 and 1, including both sides.

• Average Update Time: the average time used for updating a new item into the

data structure of the algorithm. The smaller it is, the better the algorithm is.

Synthetic Data Sets. We generated a group of data sets and each data set contains

100000 items drawn from zipf distribution, using the R package zipfR. We change the

skewness of the zipf distributions to generate different data sets. The higher the skewness

is, the fewer hot items there are in the data set; and vice versa. The skewness of the zipf

distribution is given by a decimal which is no smaller than 1, and when skewness equals

1 the distribution is uniform.

3.6.1 Algorithm Comparison

As the analysis in previous sections indicated, given that k and δ is pre-selected

and fixed, OurAlgm will generate less false positives than WhatsHot when we use same

number of groups/layers (same space) as but half the number of hash functions of What-

sHot. At the same time, our algorithm can maintain the probability of identifying all
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Table 3.2 Time comparison between WhatsHot and OurAlgm.
k = 99,δ = 0.01,d = 2.

Algorithm AverageUpdateTime(microseconds)

WhatsHot 29
OurAlgm 21

the hot items. And by using less hash functions, our algorithm should perform faster

than WhatsHot.

In this part, we fix k = 99, δ = 0.01 for both WhatsHot and OurAlgm, and set d = 2

for OurAlgm. In this case, the two algorithms will use same space, while OurAlgm will

use half the number of hash functions of WhatsHot. We run the two algorithms over the

synthetic data sets of different zipf skewness. For each data set, we run each algorithm

10 times and calculate the average recall, precision and update time. The experiment

results are shown in figure 3.5 and table 3.2.

We can see from figure 3.5 that given the same space, OurAlgm maintains recall at 1

under different zipf distributions, while WhatsHot has lower recall when the distribution

is less skewed. Also, OurAlgm has higher precision than WhatsHot especially when the

distribution is less skewed. This makes sense because when the number of groups is fixed,

using more hash functions will make the probability of two hot items assigned to a same

group higher, and thus the probability to identify all the hot items lower. And when the

data is less skewed, the frequencies of the hot items and non-hot items are both close to

the threshold 1
k+1

, which makes it harder to identify a true hot item in a group correctly:

a small number of non-hot items in the same group will generate a false positive and

decrease the precision. By using less hash functions, OurAlgm will assign fewer items into

a same group and make the probability of generating false positives smaller and precision

higher. Table 3.2 shows that given same space OurAlgm runs faster than WhatsHot when

updating the items. Combining with the figure, we could say that OurAlgm performs

better than WhatsHot in terms of recall, precision and average update time.
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Figure 3.6 Recall and precision of OurAlgm with different parameter d which de-
termines the space and time requirements. Synthetic data are used for
testing.

3.6.2 Tuning Parameter d

We run OurAlgm over the synthetic data sets under different settings of parameter d

(d > 0) to see if the recall can always keep high and how the precision will change with

d. The results are shown in figure 3.6. Sub-figure 3.6a shows that OurAlgm will always

have recall near 1 while d changes. This follows the proof in section 3.5 that as long as

L and T satisfies L > kT , OurAlgm will have high probability to identify all the hot

items. Sub-figure 3.6b shows that the precision of OurAlgm will generally increase as d

increases. This makes sense that when d is larger, L is larger and T is smaller which

means that the number of items assigned to a same group is smaller. This makes the

probability of generating a false positive in a group smaller.

From the definition of L = 2d

d
k log k

δ
and T = 1

d
log k

δ
, we can see that L takes smallest

value when d = 1
ln 2

while T decreases as d increases. Since L determines the space to use

and T determines the time to use, if our algorithm is used in practice, we would like to

choose d neither too large nor too small. And if there is a preference on space or time,

then d could be tuned to fit to the preference. We plot the average update time and

number of layers/subgroups used for different values of d and show them in figure 3.7.
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Figure 3.7 Average update time and number of layers(subgroups) used for different
d. Synthetic data are used for testing.

Combining figures 3.6 and figure 3.7, we can see that setting d between 2 and 3 would

be a good choice for balancing time and space while keep high recall and precision.

3.7 Conclusion

In this chapter, we have studied the problem of how to identify hot items in single or

multiple dynamic data streams which is a variant of hot items identification. We’ve shown

that most of the existing methods for hot item identification do not work for the problem

formalized in this chapter. Our proposed method improves upon previous method and

uses Group Testing based sketching algorithm to identify hot items in single or multiple

dynamic data streams. Both theoretical analysis and experimental evaluations show that

our algorithm can provide higher recall and precision for identifying hot items than the

previous method.
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CHAPTER 4. DISTINCT ELEMENT COUNTING

4.1 Introduction

Distinct element counting problem has been found useful in many network monitoring

applications to detect different kinds of cyber attacks or anomalies, such as DDoS attacks,

worm spreading, spam email delivery, botnet takeover and malicious domains. When

researching on the problem of detecting server outages, we came across the distinct

element counting problem again. The case is that when a server outage happens, the

users’ TCP connection setup requests fail at the handshake phase at an abnormally high

rate because the server is unable to respond to the users’ TCP connection requests.

Network monitoring systems can count the number of unsuccessful TCP connection

requests to detect a server outage Padmanabhan et al. (2006)Glatz and Dimitropoulos

(2012). An unsuccessful TCP connection request is one that the user sends a TCP SYN

to the server but does not receive the TCP SYN-ACK from the server, which leads to

that the three-way handshake cannot complete.

In the server outage detection case, a user-sent SYN can be modelled as an insertion

of a distinct element and a server-sent SYN-ACK can be modelled as a deletion of

a distinct element. The number of distinct SYNs with no corresponding SYN-ACKs

would be equal to the number of unsuccessful TCP connection requests, which can be

modelled as the number of remaining distinct elements. A user can repeatedly send TCP

connection requests to the server until s/he gets response from the server or gives up,

which correspond to one or more (repeated) insertions of a distinct element. A user’s
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successful TCP connection with the server may drop because of server outage and the

user may try to reconnect to the server which corresponds to a re-insertion of a distinct

element. In such a case, the distinct element counting problem solved in this context

is different from all the existing versions of distinct element counting problems in the

following ways:

1. Insertions and deletions of a same distinct element can be observed in two-way

(round-trip) streams at a single monitoring point. They may also appear in different

streams at two or more different monitoring points.

2. A deletion of a distinct element cancels out all the previous insertions of this

element.

3. A distinct element can be re-inserted after it has been deleted.

And the goal of the distinct element counting problem in this case is to count the number

of remaining distinct elements that were inserted but have not been deleted, and further

calculate the ratio of such distinct elements over all appeared distinct elements. To our

best knowledge, this is the first formulated distinct element counting problem of this

type, which is different from all existing types of distinct element counting problems in

the literature.

There have been a lot of work done to solve different versions of the distinct element

counting problem, but none of these solutions can solve the problem described here. For

example, LogLog Durand and Flajolet (2003), HyperLogLog Flajolet et al. (2007), Balls-

BinsKane et al. (2010) works on insertion-only data streams, and solutions in Ganguly

et al. (2004) Ganguly (2007) Gemulla et al. (2008) Kane et al. (2010) works on the Ham-

ming norm estimation problem which measures the number of insertions and deletions

of a distinct element to decide whether to count it. We will discuss and compare these

solutions in the related work section.
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In this chapter, we formulate a new type of distinct element counting problem that

none of existing solutions work. We will present a probabilistic estimation method to

solve the distinct element counting problem in not only a single data stream but also

distributed dynamic streams. We first give a solution for the problem in a single data

stream case, in which we use adaptive sampling technique to keep a fixed-maximum-

size sample of the distinct elements in the data stream and use this sample to give a

(1± ε) estimation with high success probability. We also design a data structure based

on Cuckoo hashing Pagh and Rodler (2004) to maintain our sample which can provide

expected constant update time of each element as well as constant estimation time using

bounded space. Then we extend this solution to solve the distinct counting problem

in distributed dynamic data streams. Our extended method works by maintaining our

small-space data structure locally for each data stream, sending these data structures to

a central monitor, merging them together into a single final data structure at the central

monitor, and then estimate the distinct elements using this final data structure. In this

way, we save the space and time overhead in the transmission and merging of the original

data streams.

The rest of this chapter is organized as following. We will overview some related work

in section 4.2. We formally define our problem in section 4.3. We give our solution for

single data stream in section 4.4 and our solution for distributed data streams in section

4.5. The theoretical analysis and experimental evaluations are provided in section 4.6

and 4.7 respectively.

4.2 Related Work

Probabilistic counting of the number of distinct elements in a data stream has a long

line of research activities since the famous Flajolet-Martin sketch Flajolet and Martin

(1985) was proposed in 1985. These solutions work under different assumptions. Most of
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them work in the case where only insertions of elements exist in the data stream Flajolet

and Martin (1985) Gibbons and Tirthapura (2001) Bar-Yossef et al. (2002) Durand and

Flajolet (2003) Cormode et al. (2005) Flajolet et al. (2007) Kane et al. (2010). When

there are also deletions of elements in the data stream, the problem of counting distinct

elements becomes more difficult to solve.

If there is no re-insertions in the data stream, then a variation of the optimal algorithm

Kane et al. (2010) for insertion only data stream would be an optimal solution: we can

consider the insertions and deletions of elements as two different data streams, estimate

the distinct elements in the two data streams separately using the optimal algorithm,

and then subtract the number of distinct elements in the deletion only data stream

from the insertion only data stream to get the number of remaining distinct elements.

However, since we care about the order of insertions and deletions of a distinct element,

this variation of Kane et al. (2010) cannot work for our problem.

Some works solve the distinct counting problem with both insertions and deletions

of elements in a data stream but only works on a set of distinct elements Gemulla et al.

(2008), which assumes that the insertion or deletion of a distinct element happens at

most once. Some works estimate the Hamming norm of a data stream Gibbons (2001)

Cormode et al. (2002) Ganguly et al. (2004) Ganguly (2007) Kane et al. (2010), where

the number of insertions and deletions of a distinct element will determine whether or

not to count this distinct element: if the number of deletions is not equal to the number

of insertions, we will not count the distinct element, otherwise we will. These solutions

cannot work for our problem, since we do not care about the number of insertions and

deletions of a distinct element and we only care about the order of them.

Recently, there is work done to solve the distinct element counting problem in dis-

tributed data streams. Good upper and lower bounds are given for distinct element

counting in insertion-only data streams in papers Cormode et al. (2011) Woodruff and

Zhang (2012). However, as paper Arackaparambil et al. (2009) has shown, for dynamic



www.manaraa.com

38

data streams with both insertion and deletion of elements, there is no good upper bound

for distinct element counting problem, and it gives a lower bound which depends on the

size of the input data streams.

The ideas used in previous solutions for different versions of distinct element counting

problem can be utilized in our case to help solving the problem. The basic idea is to map

the input distinct elements uniformly onto a certain output field and try to maintain a

small part of this output field to estimate the number of input distinct elements. There

are several ways to choose a small part to maintain. For example, we can choose to

maintain the k smallest output values, or we can maintain the group of output values

which is about 1
2r

of the total number of distinct elements. Such technique can be

considered as distinct sampling where the distinct elements are sampled uniformly at a

certain sampling rate and the sample set is used to estimate the original set size. The

ideal case is that the mapping is one-to-one and no collision happens. But in practice

this is impossible except we know the data stream first and create a mapping table for

it, which is of course impossible. However, we can use universal hash functions Carter

and Wegman (1979) to bound the probability of mapping collisions and still get good

estimations.

When we want to maintain a set of elements, it comes to the problem of how to

design a data structure and the algorithm such that insertions and deletions of elements

would take as little time as possible. The most efficient data structure to solve this

problem would be a dictionary where each element can find its position in O(1) time.

However, in practice, the implementation of such a dictionary always has the problem

of collisions, where two elements may be mapped to the same position in the dictionary.

There are many ways to resolve such collisions, such as linear probing, chained hashing,

multiple-choice hashing. Among them, Cuckoo hashing Pagh and Rodler (2004) solves

the collision problem with constant update time using universal hash functions.
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4.3 Problem Definition

We model a single data stream S as an ordered sequence of insertions and deletions

of elements denoted by

(x1, v1), (x2, v2), . . . , (xi, vi), . . .

where xi is the identifier of the ith element and vi indicates whether it is an insertion or

a deletion of the element. In our problem, all the elements’ identifiers take values in a

universe of size N , and we suppose xi ∈ [0, N − 1]. Value vi can be 1 or −1: vi = 1

indicates an insertion, and vi = −1 indicates a deletion which will cancel out all the

previous insertions of the element.

The set of all distinct elements that have been inserted into the data stream when

the tth update has occurred (measuring point t) is defined as

At = {x|∃(xi, vi) ∈ S : xi = x ∧ vi = 1 ∧ 1 ≤ i ≤ t}

The size of set At is denoted as αt = |At|.

The set of remaining distinct elements in the data stream S when the tth update has

occurred (measuring point t) would be

Bt = {x|(∃(xi, vi) ∈ S : xi = x ∧ vi = 1 ∧ 1 ≤ i ≤ t)

∧ (¬∃(xj, vj) ∈ S : xj = x ∧ vj = −1 ∧ 1 ≤ i < j ≤ t)}

So the set Bt contains all the remaining distinct elements which have been inserted in

the data stream but not yet deleted. The size of set Bt is denoted as βt = |Bt|. We can

see that Bt ⊆ At and βt ≤ αt.

Problem Definition: we want to give an (ε, δ) estimation β̃t of βt such that |β̃t−βt| ≤

εβt with probability at least 1 − δ, where parameters ε and δ are pre-selected. We also

want to give an (ε, δ) estimation on the ratio of Bt to At: qt = βt

αt .

When there are multiple distributed data streams S1, S2, . . . , Sm, the problem be-

comes to measure βt and qt = βt

αt of the data stream S ′, where S ′ is a union of S1, S2,
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. . . , Sm and the elements in S ′ are ordered by their appearing time. In next section, we

will give a solution for the problem in a single data stream, and then extend this solution

to solve the problem in multiple data streams in a new section following that.

Table 4.1 Notations for Distinct Element Counting

Notation Meaning

αt number of distinct elements appeared in the data stream at mea-
suring point t

βt number of remaining distinct elements in the data stream at mea-
suring point t

qt ratio of remaining distinct elements to all appeared distinct ele-
ments at measuring point t

N the size of the universe
ε error bound, between 0 and 1
δ fail probability bound, between 0 and 1
ψ the maximum size of the distinct elements sample we maintain
lsb(x) position of the least significant bit 1 of a binary value, e.g.

lsb(1002) = 2, lsb(0012) = 0

4.4 Distinct Element Counting over Single Dynamic Data

Stream

4.4.1 Basic Idea

The basic idea of our algorithm is as following. At each time point t, the set At can

be divided into two sets:

• Bt: distinct elements that were inserted and have not been deleted.

• At \ Bt: distinct elements that were inserted but have been deleted.

At each time point, we use a same sampling probability to randomly and uniformly

sample from Bt and At \ Bt respectively, and keep the sampled elements from the two

sets together as the sample. Actually, this sampling process has the same effect as
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sampling directly from all the distinct elements appeared in the data stream At. We

keep the sample within a fixed maximum size by decreasing the sampling probability

when the sample size increases as the size of At increases. As long as the sample size is

large enough and the ratio qt is larger than the pre-selected threshold q0 that we want to

detect, we can always keep some distinct elements from Bt in our sample and use these

elements to estimate the size of Bt.

Since we do not know how many distinct elements there are in the data stream, we

do not know neither the best sampling probability we should use to keep a sample of the

fixed maximum size. However, we could use a series of known sampling probabilities of

gradually decreasing values to maintain the size of the sample set within the maximum

value. In our algorithm, we use sampling probabilities 1
2b

where b starts from 0 and

increases by 1 each time the sample size exceeds the maximum value.

The reason why we sample distinct elements from both Bt and At \ Bt is that we do

not know whether an element will be deleted or not when it is inserted, that is, we do

not know whether it belongs to Bt or At \ Bt at the insertion time, until the deletion

really happens. Another merit we can get from this method is that we can also estimate

the ratio qt since we have the information of distinct samples from both Bt and At \ Bt.

To simplify the expressions we omit the time notation t from now on.

4.4.2 Issues To Resolve

4.4.2.1 Adaptive Distinct Sampling

We use a pair-wise independent hash functionCarter and Wegman (1979) h to map

each element x ∈ [0, N −1] randomly and uniformly to an integer value h(x) ∈ [0, N −1]

and use the least significant bit of the hash value i = lsb(h(x)) where i ∈ [0, logN ]

to determine whether it will be sampled or not. We define lsb(0) = logN . Given the

sampling level b, if i ≥ b, then we would sample this element; otherwise not. Since each
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element will be mapped to i = lsb(h(x)) with probability 1
2i+1 , given the sampling level

b, we are sampling each element with probability 1
2b

.

For each sample level b ∈ [0, logN ], the total sample set is denoted as Ab and the

sample set containing only remaining distinct elements is denoted as Bb. As sample size

increases, we increase b gradually. Each time b increases by 1, we can remove implicitly

about half of the distinct samples from our data structure and make room for new

samples.

4.4.2.2 Sample Set Maintenance

In order to provide quick lookup/insertion/deletion of distinct elements, we use a

data structure composed of Cuckoo hashing tables and a binary search tree (BST ) to

maintain sampled distinct elements. Cuckoo hashing resolves hash collision problem by

using two hash tables and mapping each distinct element into one position of each table.

Each distinct element is stored in one of the two positions if either of them is available.

When inserting an element x into the Cuckoo hashing tables, it first checks its position

in the first table, if it is available then it is inserted there; otherwise, it will kick out the

previous occupant at the position and insert x there anyway. The kicked-out element

will be inserted into its position in the other table, and if collision occurs again, then

the similar kick-out method is used. This process continues until all the elements are

inserted in one of their two positions or the maximum number of iterations is reached.

In the original Cuckoo Hashing version, if the collision cannot be solved at the end

of the iterations, then new hash functions are used to rehash the elements such that

no collision will happen. Such rehashing technique will make worst-case insertions very

costly. It has been shown in Kirsch et al. (2010) that with a linked list of small con-

stant size, we can handle the collisions in the Cuckoo Hashing tables efficiently. In our

implementation, we use binary search tree to maintain all the elements with collisions.
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4.4.3 Data Structure and Algorithms

Our data structure contains two hash tables TABLE-1, TABLE-2 and a BST (binary

search tree). Each hash table is of size K = Cψ, where C is a constant factor and ψ is

the size of the distinct sample set we want to maintain. In our algorithm, we set K = ψ

which makes our data structure half full in most cases. Each of the two hash tables is

associated with a hash function, h1 and h2 respectively, which is randomly chosen from

the universal pair-wise independent hash function family H2 Carter and Wegman (1979).

Each entry of the hash tables and the BST keeps three values < x, lsb(h0(x)), d >: x is

the identifier of the element, lsb(h0(x)) is the least significant bit of the hash value of x

and d indicates whether x has been deleted or not: d = 1 means it is deleted and d = 0

means it is not deleted. For the BST , the nodes in the tree are ordered according to

the value of x. Each time we increase b by 1, we will deleted the nodes in BST which

contain elements that are not sampled to reduce the size of the BST .

We also maintain two groups of values si and ri where i ∈ [0, logN ], which are updated

when insertions and deletions of elements happen. si = |Ai| − |Ai+1|, slogN = |AlogN |,

s = ΣlogN
i=b si. ri = |Bi| − |Bi+1|, rlogN = |BlogN |, r = ΣlogN

i=b ri. Here, s counts the sampled

distinct elements that have been inserted in the data stream at the current sampling

level b, while r counts the sampled distinct elements which have not been deleted yet.

We maintain these two values such that we do not need to scan the data structure to

count the remaining sampled distinct elements at estimation to save time. The values

si and ri are easy to maintain, since each insertion/deletion of a sampled element would

only change at most one of the values in these two groups: slsb(h0(x)) and rlsb(h0(x)). The

operations on the data structure are shown in Fig. 4.1, 4.2, 4.3, 4.4 respectively.
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1: Initialize K = ψ entries as empty ø for T1 and T2 respectively, where ψ = C1

ε2q0
.

2: Initialize the BST .
3: Pick random hash functions h0 ∈ H2([1, N ], [1, N ]), h1, h2 ∈ H2([1, N ], [1, K]).
4: Set MAXLOOP ← C2 logψ.
5: Set b← 0.
6: Set s← 0, si ← 0 for i = 0, 1, 2, . . . , logN .
7: Set r ← 0, rj ← 0 for j = 0, 1, 2, . . . , logN .

Figure 4.1 Algorithm: initialization. ε, q0, C1, C2 are all pre-selected parameters.

4.5 Distinct Element Counting over Distributed Dynamic

Data Streams

When the data are physically distributed in two or more streams, which means that

the insertions and deletions of a distinct element may be distributed in multiple data

streams, one way to solve the distinct counting problem is to merge the multiple data

streams together, sort the elements in the merged data stream according to their ap-

pearing time and then do the counting. However, if we use this method we have to ship

all the distributed data streams to a central monitor and do the time-consuming sorting,

which is infeasible.

Our algorithm described in section 4.4 can be extended to solve the distinct counting

problem in a distributed environment with small space and time overhead. We have to

change our data structure to remember the time information for each distinct element

stored in it. We will add an additional counter ts in each entry of the hash tables and the

BST to store the time-stamp of the latest update, either an insertion or a deletion. So

we will have four counters in each entry: 〈x, lsb(h0(x)), d, ts〉. The stored time-stamp ts

could be the real time or relative time. Accordingly, the insertion and deletion algorithms

will change: we have to update the time-stamp of the stored distinct elements to the

time-stamp of each valid update (insertion or deletion).

Another modification in the extended algorithm is that we have to maintain a list of

deletion-only elements. This is because the insertions and deletions of a distinct element
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1: Set x′ ← x, y ← lsb(h0(x)), d← 0, status← 0.
2: if y < b then
3: return.
4: end if
5: if T1[h1(x)][0] = x and T1[h1(x)][2] = 0 then
6: return
7: else if T1[h1(x)][0] = x and T1[h1(x)][2] = 1 then
8: T1[h1(x)][2]← 0, status← 1
9: else if T2[h2(x)][0] = x and T2[h2(x)][2] = 0 then

10: return
11: else if T2[h2(x)][0] = x and T2[h2(x)][2] = 1 then
12: T2[h2(x)][2] = 0, status← 1
13: else if x is in BST and not deleted then
14: return
15: else if x is in BST and is deleted then
16: set x in BST as not deleted, status← 1
17: end if
18: if status = 0 then
19: for i = 1 to MAXLOOP do
20: < x′, y, d >↔ T1[h1(x

′)]
21: if x′ = ø or y < b then
22: break.
23: end if
24: < x′, y, d >↔ T2[h2(x

′)]
25: if x′ = ø or y < b then
26: break.
27: end if
28: end for
29: if i > MAXLOOP then
30: Insert a new node in BST for x with d = 0.
31: end if
32: sy ← sy + 1, s← s+ 1.
33: end if
34: ry ← ry + 1, r ← r + 1.
35: if s > ψ then
36: s← s− sb, r ← r − rb, b← b+ 1.
37: end if

Figure 4.2 Algorithm: Insertion of x.
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1: Set y ← lsb(h0(x)), status← 0.
2: if y < b then
3: return.
4: end if
5: if T1[h1(x)][0] = x and T1[h1(x)][2] = 0 then
6: Set T1[h1(x)][2]← 1, status← 1.
7: else if T2[h2(x)][0] = x and T2[h2(x)][2] = 0 then
8: Set T2[h2(x)][2]← 1, status← 1.
9: else if x is in BST and is not deleted then

10: Set the x node in BST as deleted, status← 1.
11: end if
12: if status = 1 then
13: Set ry ← ry − 1, r ← r − 1.
14: end if

Figure 4.3 Algorithm: Deletion of x.

1: Output β̃ = 2br, q̃ = r
s
.

Figure 4.4 Algorithm: Estimation.

may be distributed in multiple data streams. For example, there is one and only one

insertion of x in data stream S1, while there is one and only one deletion of x in data

stream S2 that has a fresher time-stamp than the insertion in S1; then we should not

count this x as a remaining distinct element. However, if we use the deletion algorithm

of section 4.4, we would not maintain the deletion-only x in S2 and lose this information.

As a result, when merging the two data structures for S1 and S2, we would consider

that x is inserted but not deleted, and count it as a remaining distinct element, which is

wrong. In order to avoid such errors, we have to maintain a list of deletion-only distinct

elements, whose lsb value is larger than the sampling level, for each data stream. Such

a list can be implemented using hash table or BST, with entries as 〈x, lsb(h0(x)), ts〉.

We maintain an instance of the above extended algorithm for each single data stream

locally. For all the data streams, we use the same hash functions and the same size data

structures. At the time of estimation, we send the data structure maintained for each

data stream to the central monitor. At the central monitor, we will merge all the data
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structures together to get the final estimation results for the union of the distributed

data streams. The merging process is similar as the updating process of our single data

stream algorithm except that we have to check the time-stamp and the deletion-only list.

Here is an example of merging two data structures, excluding the deletion-only list.

Suppose we want to merge two data structures D1 and D2 together and the current

sampling levels of them are b1 and b2 respectively. Without loss of generality, suppose

b1 ≥ b2. We will update all the sampled elements stored in D2 into D1. We do not update

the sampled distinct elements in D1 into D2, because after merging, the sampling level

would be at least b1 since the number of inserted distinct elements in the merged data

stream is no smaller than either of the two single data streams. For each of the distinct

elements stored in D2, if it is sampled at level b1, we will update it into D1: if it is inserted

but not deleted, we will insert it into D1; if it is inserted and then deleted, we will delete

it from D1. Here, for each current update of x, we will check whether the current update

time-stamp is fresher than the latest update time-stamp of x stored in D1: if yes, then we

will update x into D1 and change the time-stamp accordingly; otherwise, we will ignore

this update. At last, we will go through the deletion-only elements in both D1 and D2

and delete the corresponding elements.

When there are more than two distributed data streams, we can use merge-sort-

like method to merge all the corresponding data structures together into a single data

structure. However, the deletion-only elements should be processed at the last step, after

all the possible insertions have been processed. This is to make sure that we do not lose

any information of deletion.

The final single data structure is the same as the one generated from the single

data stream which is merged from the multiple data streams by sorting all the elements

by time. The reason is that during the merging process, we utilize the time-stamp

information to update the data structure: we will always keep the information of the

latest insertion or deletion of a sampled distinct element in the merged data stream: if
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the latest update is an insertion or deletion with insertion happening before the deletion,

then this latest information is stored in the main data structure (Cuckoo-Hash tables

and BST); if the latest update is a deletion while there is no insertion happened before

the deletion, then this is stored in the deletion-only list. We can see that the above

method will save us the huge costs of data transmission and sorting.

4.6 Theoretical Analysis

4.6.1 Error Bounds

Theorem 1. Each instance of our estimator gives an (1±ε)-estimation of the number of

remaining distinct elements in a data stream with probability larger than half. By running

O(log 1
δ
) instances and taking the median we can achieve 1− δ success probability.

Proof. Since the hash function h0 is universal, we can get for each i ∈ [1, N ], Pr(lsb(h0(i)) ≥

b) = 1
2b

. The analysis of this mapping process can be found in part 4.4.2.1. Let Xb,i

be a random variable with Xb,i = 1 if lsb(h0(i)) ≥ b and Xb,i = 0 if lsb(h0(i)) < b, for

i ∈ [1, N ], b ∈ [0, logN ]. Then Pr(Xb,i = 1) = 1
2b

. The expectation and variance of Xb,i

are

E[Xb,i] = 1× Pr(Xb,i = 1) + 0× Pr(Xb,i = 0) =
1

2b
(4.1)

V ar[Xb,i] = E[X2
b,i]− (E[Xb,i])

2 =
1

2b
− 1

22b
(4.2)

We have Bb = {i|i ∈ B ∧ lsb(h0(i)) ≥ b} where b ∈ [0, logN ]. Let β = |B|, βb = |Bb|.

βb can be considered as a random variable which is the sum of the random variables Xb,i

where i ∈ B, that is, βb = Σi∈BXb,i. The expectation and variance of βb are

E[βb] = E[Σi∈BXb,i] = Σi∈BE[Xb,i] =
β

2b
(4.3)

V ar[βb] = V ar[Σi∈BXb,i] = Σi∈BV ar[Xb,i] =
β

2b
− β

22b
(4.4)
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The above calculation of variance of βb is based on the pair-wise independence of the

hash function h0 which guarantees that the covariance of Xb,i and Xb,j is 0 for different

i, j ∈ [1, N ].

By Chebyshev’s inequality, we have

Pr(
∣∣∣∣βb − E[βb]

∣∣∣∣ ≥ εE[βb]) ≤
V ar[βb]

ε2E[βb]2
≤ 1

ε2E[βb]
(4.5)

We have Ab = {i|i ∈ A ∧ lsb(h0(i)) ≥ b} where b ∈ [0, logN ]. Let α = |A|, and

αb = |Ab|, then α′bs are random variables and have similar properties as β′bs. We can

consider the data set Ab as a sample of Ab−1 with sampling probability 1
2
. Let the event

ξ1 be that αb−1 = L > ψ. For each distinct element j ∈ Ab−1, we consider the event ξ2

that j ∈ Ab. Let the indicator random variable for event ξ2 be Yb,j, such that Yb,j = 1 if

j ∈ Ab and Yb,j = 0 if j /∈ Ab, given that j ∈ Ab−1. We have the probability distribution

for random variable Yb,j as following

Pr(Yb,j = 1) = Pr(j ∈ Ab|j ∈ Ab−1) =
1

2b
/

1

2b−1
=

1

2

Pr(Yb,j = 0) = 1− Pr(Yb,j = 1) =
1

2
(4.6)

And we have the expectation E[Yb,j] = 1
2
.

Conditioned on event ξ1, we have expectation for αb

E[αb] = E[Σj∈Ab−1
Yb,j] = Σj∈Ab−1

E[Yb,j] =
L

2
>
ψ

2
(4.7)

We increase b by 1 in our algorithm each time the sample set size exceeds the max-

imum value ψ. So if current sampling level is b, then for the previous sampling level

b− 1, the event ξ1 : αb−1 = L > ψ happens with probability 1. This means that at each

estimation time point

E[αb] =
L

2
>
ψ

2
(4.8)

Since β = qα, we have

E[βb] =
β

2b
=
qα

2b
= qE[αb] (4.9)
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From inequality 4.5, we have

Pr(
∣∣∣∣βb − E[βb]

∣∣∣∣ ≥ εE[βb]) ≤
1

ε2E[βb]
=

1

ε2qE[αb]

<
1

ε2qψ
2

=
2

ε2q C1

ε2q0

≤ 2

C1

(4.10)

So if we set constant C1 ≥ 4, we can get β̃ = 2bβb = 2b(1 ± ε)E[βb] = (1 ± ε)β with

probability at least 1
2

for each instance of our algorithm. By running log 1
δ

instances and

taking the median we can achieve 1− δ success probability. Also, we assume that q > q0,

where q0 is a pre-selected parameter, which means that we can give an estimation of

the remaining distinct elements in the data stream within the given error bound ε with

probability at least 1 − δ if the ratio of remaining distinct elements to all the distinct

elements in the data stream is not smaller than the threshold q0.

Next, we will show the error bounds of our estimation q̃ of the remaining distinct

element ratio q = β
α

. From inequality 4.10, we know that we will have event-1, (1−ε) β
2b
<

βb < (1+ε) β
2b

, happen with probability at least 1− 2
C1

. We can use the similar technique to

show that we will have event-2, (1−ε√q0) α2b < αb < (1+ε
√
q0)

α
2b

, happen with probability

at least 1− 2
C1

. We can choose a big enough C1 value to let event-1 and event-2 happen

at the same time with probability at least 1
2
. Since q̃ = βb

αb
= (1±ε)β

(1±ε√q0)α = 1±ε
1±ε√q0 q, we will

have 1−ε
1+ε
√
q0
q < q̃ < 1+ε

1−ε√q0 q. Since 0 ≤ q0 ≤ 1 and 0 < ε < 1, we can choose small values

for ε such that

1 + ε

1− ε√q0
= 1 +

1 +
√
q0

1− ε√q0
ε = 1 +O(ε)

1− ε
1 + ε

√
q0

= 1−
1 +
√
q0

1 + ε
√
q0
ε = 1−O(ε) (4.11)

Above all, we will have q̃ = (1±O(ε))q.

4.6.2 Space and Time

Theorem 2. Each instance of our algorithm needs O( logN
ε2q0

) bits space and O(1) expected

update and estimation time.
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Proof. Space. In each instance of our data structure, the Cuckoo hashing tables use

2K = 2(1 + γ) C1

ε2q0
which is O( 1

ε2q0
) entries. From Aumuller et al. (2012), we know that

if we use pair-wise independent hash functions for the two Cuckoo hash tables and use

an additional linked list of maximum size u, we can preserve the rehashing probability

to Θ( 1
ψu+1 ) for each insertion of a new distinct element. For those elements that cause

rehashing, we will maintain them in the BST . Since we always maintain a sample set

with size smaller than ψ, we can see that the expected number of distinct elements that

can cause rehashing is Θ( 1
ψu ) which is ignorable. So the size of the BST is O(1) if we set

u small enough such as 4 which is suggested in Kirsch et al. (2010). For each entry we

maintain x, lsb and a deletion indicator bit, so each entry needs O(logN) bits. Totally,

we need O( 1
ε2q0

logN) bits for each instance of our algorithm.

Time. Since we are using pair-wise independent hash functions, each calculation of

a hash value will take O(1) time Carter and Wegman (1979). For each insertion of a

sampled element, we have to check the two positions in the two hash tables by calculating

two hash values and search in the BST if needed, so the expected time is O(1). When

inserting the sampled element into the data structure, the expected number of iterations

is O(1) Pagh and Rodler (2004) Kirsch et al. (2010) Aumuller et al. (2012). Since the

expected length of the BST is O(1), the expected time for insertion in BST is also

O(1). Totally the expected time for inserting a sampled element into our data structure

is O(1). For each deletion of a distinct element, we need the checking process similar

as in the insertion algorithm, so the expected time is O(1) too. The estimation time of

each instance is O(1) since we only need to do several multiplications and divisions.

4.7 Performance Evaluation

In this section, we evaluate our algorithm with both synthetic data and real traces.

We implement our algorithm using C++ in a single thread. We calculate the estimation
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Figure 4.5 Average error rate and error-in-bound rate of estimations of the remain-
ing distinct element number for different choices of ε. Evaluated with
synthetic data.

error rate for both remaining distinct element number β and its ratio q = β
α

. Suppose

the true value is β and our estimation value is β̃, the estimation error rate is defined

as |β̃−β|
β

. Based on the error rate, we also calculate the error-in-bound rate which is the

frequency of successfully getting an error rate within the given error bound ε.

4.7.1 Synthetic Data

We generate 50 sets of different synthetic data with Normal distributions or Zipf

distributions for this evaluation. Each data set contains 2, 000, 000 data items. The IDs

of the data items are all integer numbers in [1, 232], and the values can be 1 or −1 which

indicates insertion and deletion respectively. The true α, β, q values for the data sets

are all different, while α is always larger than the size ψ of the sample we maintain in

our algorithm, and q is always larger than the pre-selected q0.

4.7.1.1 Different ε

In this evaluation, we want to test the accuracy of our algorithm in different settings

of ε. We fix other parameters as q0 = 0.1, C1 = 4, C2 = 3. We change the value of the
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error-bound ε to see whether the estimation error rate is within this bound. We run our

algorithm on each of the data sets 10 times with different hash functions for each ε, and

estimate the number of remaining distinct elements at different time points. We measure

the average error rate of estimations as well as the rate of successfully bounding the

estimation error within the pre-selected parameter ε. We grouped the results according

to the true value of the remaining distinct elements ratio at the measuring points.

The experiment results are shown in Fig. 4.5. We can see that for each pre-selected

error bound ε, the estimation errors are within the bound with very high probability (at

least 0.85). Even when the remaining distinct elements only takes up 15% of the total

(which corresponds to the left-most points), the average estimation errors are very small

and the error-in-bound rate, which is larger than 0.85, is much higher than the expected

value 0.5 given in theoretical analysis.

4.7.1.2 Size of the BST

We also measure the size of the BST which maintains the elements with collisions to

see if it will grow too large to slow down the update time. The result is given in Fig.

4.6. We can see from the figure that the size of the BST increases as ε decreases, which

makes sense since when ε decreases, the hash table size as well as the size of the sample

we maintain increases, and we will have more chances of getting collisions. However,

the size of the BST is quite small comparing to the size of the hash tables: for different

values of ε, the BST size is about 2% (or less) of the total size of the two hash tables.

4.7.2 Real Trace

We use a DDoS attack trace from CAIDA DDo () to evaluate our algorithm. The

attack makes the server unable to respond to part of the users that are sending TCP

requests to it, which leaves a number of unsuccessful TCP connection requests in the

traffic. We want to estimate the number of users with unsuccessful connection requests
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Figure 4.6 Average size of the BST (binary search tree) in our data structure. Eval-
uated using synthetic data.

sent to the server (unsuccessful users), and its ratio to the total number of users who

send TCP connection requests to the victim server. This data set contains one-hour

two-way trace of the DDoS attack. The one-hour trace is split into 5-minutes pcap files

and each packet contains the IP headers and transport layer headers.

We construct a data stream for the one-hour trace in the following way: for each

packet containing the initial TCP SYN sent to the victim server, we use the source IP

address as the ID of the element and 1 as the value; for each packet containing TCP

SYN-ACK sent from the victim server, we use destination IP address as the ID of the

element and −1 as the value. At each measuring point, the number of remaining distinct

element is the number of users with unsuccessful TCP connections, and the total number

of distinct elements is the total number of users who send TCP connection requests to

the victim server.

We’ve implemented a distributed version of our algorithm which is described in section

4.5. We evaluate this distributed version using the DDoS2007 trace since it contains time-

stamp of the packets. We randomly separate the trace into two streams, maintain our

extended algorithm on each of the two streams, and finally merge the two data structures

to get final estimations. We show here the average error rate and error-in-bound rate
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Figure 4.7 Precision of the distributed version of our algorithm for different values
of q0, with ε = 0.25. Evaluated with DDoS2007 trace.

for the unsuccessful user number estimations over the two data streams, and present

some of the results in Fig. 4.7. We can see that the estimation errors are very small

and the error bound can be achieved with very high probabilities. This conforms to our

theoretical analysis and verifies that the distributed version of our algorithm also works

for our problem.

4.7.3 Comparison of Algorithms

We compare the precision of our algorithm with the insertion-only algorithm in Kane

et al. (2010) (referred as BallBinInsertion) and a modified version of Kane et al. (2010)

(referred as BallBinDynamic) which can handle deletions of elements in the data stream.

We refer to our algorithm as OurAlgm. For BallBinInsertion algorithm, we use two

instances of their algorithm to maintain the insertions and deletions of distinct elements

respectively, and calculate the remaining distinct elements by subtracting the number of

deleted elements from the number of inserted elements.

For BallBinDynamic algorithm, we modify the original algorithm of Kane et al. (2010)

by maintaining logN sampling levels and in each level using 1
ε2

counters to count the
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Figure 4.8 Comparing our algorithm with BallBinInsertion and BallBinDynamic al-
gorithms with ε = 0.05. Evaluated with both synthetic data and real
trace.

number of elements that are sampled in the level and thrown into each counter. When

updating the arriving elements, if it is an insertion of element, then we increase the

corresponding counter; if it is a deletion of element, we decrease the counter. In this

way, we can handle the deletions of elements.

We use both synthetic data and real trace to compare the three algorithms. The

evaluation results are shown in Fig. 4.8. It is very clear that both BallBinInsertion and

BallBinDynamic algorithms are performing much worse than our algorithm especially

when the true remaining ratio is low. This makes sense, since for BallBinInsertion al-

gorithm, the numbers of inserted and deleted elements are both estimated with certain

errors, and after subtraction, the estimated number of remaining elements would have

larger error. Another reason is that neither of the two algorithms matches the deletions

with the corresponding insertions of distinct elements. Both algorithms would underes-

timate the number of remaining distinct elements when a significant part of the updates

in the data stream are deletions.
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4.8 Conclusion

In this chapter, we formulate a new type of distinct element counting problem in

single and distributed dynamic data streams. We are the first to give a space-and-

time-efficient algorithm to solve this new problem which is useful for network monitoring

applications. We have given theoretical analysis of our estimation algorithm to show that

it can give (1± ε) estimations with high probability, and the space and time required for

each instance of our algorithm are O( 1
ε2q0

logN) bits and O(1) expected update time per

element. We have evaluated our algorithm with synthetic and real data sets to show that

our algorithm can give bounded-error estimations with high success probability which

conforms to the theoretical analysis.
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CHAPTER 5. SUPERSPREADER IDENTIFICATION

5.1 Introduction

Internet Service Providers (ISPs) collect traffic measurements for various purposes like

customer accounting and traffic engineering Estan and Varghese (2002), which are also

used for traffic anomaly detection Manikopoulos and Papavassiliou (2002), cyber-attack

attribution Brenner (2009), network forensic analysis Xie et al. (2006), etc. An important

traffic feature of interest is the host cardinality Chen et al. (2009); Cao et al. (2009);

Guan et al. (2009), defined as the number of distinct peers that a host communicates

with. High-cardinality hosts, known as super-spreaders Venkataraman et al. (2005), are

often the signs of many security problems, e.g., (distributed) denial-of-service attacks,

spam emails, worm spreading, botnet takeover, etc. For example, a compromised host

doing fast scanning for worm propagation often makes an unusually high number of

connections in a short time. When a host is infected, it randomly generates destination

IP addresses and tries to infect the hosts at these addresses. Thus, high cardinalities

are important signs of malware propagation in the network. Many previous works have

verified the effectiveness of the cardinality as a primary feature for network security Cao

et al. (2009); Guan et al. (2009); Venkataraman et al. (2005); Zhao et al. (2005); Locher

(2011).

We study the problem of detecting high-cardinality hosts with the following goals:

• Firstly, the detection of high-cardinality hosts requires a network-wide traffic view.

The attack traffic may enter the network from multiple routers. If we only monitor
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the cardinality at every single router, the attackers would be missed at any of them.

Therefore, we have to merge the traffic measurements from multiple routers, and

get a network-wide view of the host cardinalities.

• Secondly, the packets from the same connection must be removed for the cardinality

computation. When we merge the traffic measurements from multiple routers, we

cannot simply add the cardinality of a host at each router together to calculate

its total cardinality. Because each connection may travel multiple routers from the

source to the destination, we need to design a method to only count the distinct

connections.

• Thirdly, due to the large size of the traffic measurements, ISPs are only able to

collect some summaries of the traffic measurements from local routers. We have to

design a mergable data structure, referred as a sketch, to reduce the communication

costs.

• Lastly, we cannot compute the cardinality for every single host in order to identify

the high-cardinality ones. Due to the large size of the IP addresses, we want to

only estimate the cardinality for hosts with high-cardinality using limited space

and running time.

The above challenges have only been partially addressed in previous work, and there

have been no algorithm that can solve all these challenges, to the best of our knowledge.

In this chapter, we propose a new data streaming algorithm to compute a mergable

Agarwal et al. (2012) and reversible Schweller et al. (2007) sketch, which can be used

to identify high-cardinality hosts from network-wide traffic measurements. Our data

structure summarizing traffic measurement is designed based on noise group testing

Chan et al. (2011), which can identify high-cardinality hosts efficiently in a distributed

network monitoring system. Our main idea is that we consider the identification of high-

cardinality hosts as a channel-coding problem, which also provides a new theoretical
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analysis method for this problem. Our work aims to provide a new scheme for distributed

network monitoring, which is much more efficient than the state-of-art solution.

5.2 Related Work

A super-spreader detection algorithm contains two steps: cardinality estimation and

host identification. For cardinality estimation sampling or sketching techniques can be

used. Sampling technique provides a simple way to keep a subset of the original data

to estimate cardinality and at the same time keep information of the identities of the

super-spreaders. For example, Venkataraman et al. Venkataraman et al. (2005) proposed

the first efficient algorithm to identify super-spreaders, which sampled packets from a

set of distinct source-destination pairs. Similar sampling method was also used by Cao

et al. Cao et al. (2009) to identify hosts with moderately large number of connections in

the network. However, sampling based algorithm often have problems of space and bias:

the space used to keep the sampled data may depend on the original data and not be

always bounded; sampled data may also be biased and generate large errors when used

to estimate cardinality.

Sketching technique provides a space-efficient way to estimate cardinality. However,

many sketching algorithms lack the ability to recover the identities of super-spreaders.

For example, Zhao et al. Zhao et al. (2005) propose an algorithm combining sketching

and sampling techniques for super-spreader identification. Their algorithm first samples

the packets and then uses a Bloom Filter, which consists of 2-dimensional bit arrays, to

estimate the cardinality. In their method, each packet is hashed by several independent

hash functions into different positions in the bit arrays, and the bit on each corresponding

position is set to 1. The number of connections at each host can be estimated based on

the number of 1s in the bit arrays. Their algorithm is improved by Guan et al. Guan

et al. (2009) who use Chinese Remainder Theorem to speed up the identification.
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A reversible sketch is a summary of the data stream using small space and has the

ability to recover the identities of interested items. It may be firstly proposed for frequent

item detection Cormode and Muthukrishnan (2005b) which applies combinatorial group

testing (CGT) to efficiently identify top-k frequent items. The idea is that there are

at most k items with a frequency larger than the threshold S
k+1

in the data stream,

where S is the total frequency of the data stream. If a high-frequency item is put with

several items having small frequencies in a same group, then this high-frequency item

can be identifies as a majority efficiently by group testing technique. The CGT sketch

Cormode and Muthukrishnan (2005b) divides all items into 2k groups almost evenly

and randomly, and picks out the majority from each group if there exists one. By

independently repeating this procedure log(k/δ) times, they can guarantee that all top-k

frequent items can be picked up as a mority with probability at least 1−δ. Schweller et al.

propose another Reversible sketch Schweller et al. (2007) for change detection in network

traffic. Both sketches utilize the position information to identify interested hosts in the

network. A similar recovery method has also been proposed for traffic anomaly detection

with the Principle Component Analysis (PCA) Li et al. (2006) and the aggregate queries

in high-speed network Liu et al. (2012).

For cardinality estimation, there has been a lot of work done in the condition of

centralized data processing Bar-Yossef et al. (2002) Durand and Flajolet (2003) Flajolet

et al. (2007) Kane et al. (2010). Kane, Nelson and Woodruff Kane et al. (2010) have

developed an optimal algorithm which can guarantee a half decent (1±ε)-approximation

of cardinality at all time points, using O( 1
ε2

+ logm) space, where m is the size of the

universe, and O(1) updating and reporting time. In order to provide a small failure

probability δ, this algorithm has to be repeated log(1/δ) times independently. If this

algorithm is used in reversible sketches Schweller et al. (2007); Cormode and Muthukr-

ishnan (2005b); Liu et al. (2012), the space and the running time would be very high

for the detection of high-cardinality hosts. Therefore, we propose a more efficient data
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Figure 5.1 Network-wide Traffic Monitoring

structure than trivial solutions, which considers the errors in cardinality estimation.

5.3 Problem Definition

In this chapter, we focus on the identification of high-cardinality hosts from network-

wide traffic measurements. Assume there are k routers in the network, each of which

monitors a stream of packets as shown in Fig.5.1. At the i-th router for i = 1, . . . , k,

there is a packet stream, denoted by

(si1, di1), (si2, di2), . . . , (sit, dit), . . . (5.1)

where t denotes the current time, and sit, dit ∈ U denote the source and the destination IP

addresses in a packet, respectively. Let U denote the set of all the possible IP addresses

in the network. And let m denote the size of the universe U : m = |U|. If IPv4 is used,

then the size of U would be 232.

Let Ait denote the set of packets observed at the i-th router in the current measure-

ment window of length τ ,

Ait = {(sij, dij) | j ∈ [t− τ, t]}. (5.2)
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Table 5.1 Notations for superspreader identification

Notation Meaning

U the universe, e.g. set of all possible IP addresses
m the size of the universe
ε estimation error, 0 < ε < 1
δ failure probability for a randomized algorithm, 0 < δ < 1
OPT the optimal cardinality estimation algorithm in Kane et al. (2010)
Ft sum of the destination cardinalities of all the hosts at time t

F̂t an estimation of Ft
L number of layers in our data structure
G number of groups in each layer of our data structure
κ number of hash functions used for randomly separating the hosts

into subsets
hj jth hash function used for separating the hosts into subsets, 1 ≤

j ≤ κ
q(s) quotient of s divided by L
W (q(s)) codeword of q(s) encoded by an error correcting code
lssb(x) position of the least significant bit 1 of x, starting from 0, e.g.

lssb(01002) = 2, lssb(01012) = 0
⊕ bit-wise XOR operator

The set of the destination IPs from a host x is denoted by

Dxit = {d | (x, d) ∈ Ait}. (5.3)

We define the destination cardinality Dx
t of a host x at time t as the number of

distinct hosts in the union of the sets Dxit,

Dx
t = | ∪ki=1 Dxit|. (5.4)

The high-cardinality hosts are the ones with a large destination cardinality that

exceeds a given threshold. Here, we only define the high-destination-cardinality hosts;

for high-source-cardinality hosts, the definition is similar which we omit here.

Definition 2. Given a threshold θ, a host x ∈ U is identified as a high-cardinality host

if

Dx
t > θ. (5.5)
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Due to the resource limitation, we can only detect the high-cardinality hosts with

some approximation errors. Let Ft denote the total number of distinct connections,

Ft = | ∪ki=1 Ait|. (5.6)

It is easy to verify that Ft equals to the sum of the destination cardinalities of all the

hosts,

Ft =
∑
x∈U

Dx
t (5.7)

An (ε, δ)-approximation algorithm can provide the following error guarantee.

Definition 3. An (ε, δ)-approximation algorithm can report any host x ∈ U such that

Dx
t > θ + εFt (5.8)

as a high-cardinality host with a probability at least 1− δ.

Given limited memory, engineers can determine the parameters δ and ε to balance the

detection error and the missing probability. An optimal selection of δ and ε is determined

by the distribution of host cardinalities in the network, which is unknown during traffic

monitoring. Usually, we choose ε small enough to guarantee that θ > εFt. To simplify

the description, we will omit the subscript t in the rest part of this chapter.

5.4 Our Algorithm

In this section, we describe a new data streaming algorithm for identifying hosts

with high destination cardinalities, which is well-known as the super-spreader problem.

The problem of high-source-cardinality hosts identification can be solved with the same

algorithm by exchanging source and destination IP addresses in our solution. We first

introduce our data structure, i.e. sketch, used to summarize traffic measurements. And

then, we describe our update algorithm at each local router, and merge algorithm at the

NOC. At last, we provide our query algorithm for high-cardinality host identification,

which is also our main contribution.
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5.4.1 Basic Ideas

Noisy Group Testing. If we are given n distinct hosts and only one of them is

a super-spreader, then we can assign these hosts into log n groups, and the assignment

rule is that an item is assigned to group i if its ith bit is 1, where 1 ≤ i ≤ log n. For

each group, we calculate the sum of cardinalities of the hosts in the group. If the sum

is larger than the threshold, then we consider there is a super-spreader in the group.

By checking all the groups, we can know which groups contain the super-spreader, and

we can recover the identity of this super-spreader according to the group indices. For

calculating the cardinality sum of each group, we use OPT to estimate it, which gives

an (1 ± ε)-approximation with probability at least 2
3
. From now on, we use OPT to

refer to that optimal cardinality estimation algorithm. Using the cardinality estimation

algorithm means that we may get an opposite result for each group: while a group in

fact contains a super-spreader, the estimation algorithm result says it does not contain

one; vice versa. And this is where the ”noise” come from.

Error Correcting Code. In order to remove the noise in the noisy group testing

procedure, we use error correcting code to encode the identities of the hosts before

they are put into the group testing procedure, and decode the identity of the super-

spreader returned from the group testing procedure. Encoding the identity of a host

adds some additional bits to it, so the number of groups we are going to maintain

will increase correspondingly. During the noisy group testing procedure, one bit of the

encoded identity of the super-spreader may be incorrectly recovered due to the cardinality

estimation error, the decoding procedure will remove this one-bit error and give back the

correct identity of the super-spreader.

Identifying Multiple Super-spreaders. The above group testing technique works

when the assumption that there is only one super-spreader in the given set of hosts

stands. However, in the packet stream, there may be more than one super-spreaders.

In order for the group testing technique to work, we have to separate all the hosts into
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Figure 5.2 An overview of our sketch

different subsets, each of which contains one super-spreader, and use group testing on

each subset. Suppose we want to separate all the hosts into L subsets where the number

of subsets is larger than the number of super-spreaders, and each subset contains at

most one super-spreader. We use κ randomly chosen universal hash functions for the

separation procedure: a host is assigned to a subset which is determined by a hash

function; each host will be assigned to κ subsets by the κ different hash functions. By

using a universal hash function, we can separate the hosts randomly, but we may still

end in the condition that two or more super-spreaders are assigned to the same subset;

by using multiple different universal hash functions, we can have higher probability that

for each super-spreader, there exists one subset that contains this super-spreader and

only this one.

5.4.2 Overview of Our Sketch

An overview of our data structure is shown in Fig. 5.2. We use a 2-dimensional

L × G data structure (sketch) to maintain the cardinality information of all the hosts

in a packet stream at a router. There are L layers in the data structure, each of which

represents a subset of the hosts. Each host is assigned to k layers/subsets by k universal
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hash functions hj(.), j = 1, 2, . . . , k. In each layer, there are G groups which correspond

to G− 1 groups used for group testing and 1 additional group that maintains the sum of

cardinalities of all the hosts in the subset. We apply the noisy group testing technique

in each layer. For each group, it is an instance of OPT, and can estimate the sum of

cardinalities of the hosts assigned to this group. We use C[a, b] to denote a group in our

data structure, where 0 ≤ a ≤ L− 1, 0 ≤ b ≤ G− 1.

The values of L,G, k are set as below and why they are taking these values would be

shown and proved in section 5.5.

L = O(
1

ε
log

1

δ
) (5.9)

G = O(log
m

L
) (5.10)

k = O(log
1

δ
) (5.11)

Besides this 2-dimensional data structure, we also maintain an independent data

structure to estimate Ft in the network using OPT.

5.4.3 Update

The brief initialization and update algorithm is shown in Fig. 5.3. When a packet

(s, d) arrives at a local router, we will update our sketch maintained at the router by

using a similar procedure in Liu et al. (2012). We first use a set of κ hash functions

hj, 1 ≤ j ≤ κ to find a set of κ layers for the host s, and the jth hash function is defined

as

hj(x) = (x mod L)⊕ h′j(bx/Lc) (5.12)

for j ∈ [1, κ], where h′j(x) is a universal pair-wise independent hash function that maps x

into [0, L−1]. The value of L should be chosen as a power of 2 in order to guarantee that

hj(x) is in the range [0, L − 1]. The hash function hj(x) basically XORs the remainder

of s divided by L and the randomized quotient q(s) = bs/Lc as the index of the layer to

which s is assigned to.
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1: Initialization():
2: Initialize L,G, κ.
3: Initialize a 2-dimensional L×G array C[L,G], each element of which is an instance

of OPT.
4: Randomly choose κ pairwise independent hash functions h′j : [1, m

L
] → [0, L − 1]

where j = 1, . . . , κ.
5: Initialize hj(x) = (x mod L)⊕ h′j(bx/Lc) where j = 1, . . . , κ.
6: Update (s, d):
7: q(s)← b s

L
c

8: W (q(s)) = Encode(q(s))
9: for j = 1 to κ do

10: Insert d into C[hj(s), 0]
11: for i = 1 to G− 1 do
12: if ith bit of W (q(s)) is 1 then
13: insert d into C[hj(s), i]
14: end if
15: end for
16: end for

Figure 5.3 Algorithm for initializing the data structure and updating a packet into
it.

Suppose the layer selected by hash function hj is `j. We will always add the desti-

nation d into the first group of `j. The first group will be helpful to filter false positives

in the query procedure. For the remaining groups in `j, they are used for noisy group

testing procedure. As mentioned previously, in order to remove the noise caused by the

cardinality estimators, we use an error-correcting code Betten et al. (2006) to encode the

quotient q(s) into a codeword W (q(s)). As indicated by the group testing idea described

in section 5.4.1, the number of groups used here is determined by the length of the code-

word W (q(s)) in binary representation and further determined by the error-correcting

code we use. For example, if the quotient length is 26 in binary representation and Ham-

ming code is used, then the codeword length is 31, which means the number of groups

for group testing in each layer would be 31, and G = 32. According to the group testing

idea, we add the destination d into the groups of layer `j whose indices correspond to

the 1-bits in the binary representation of codeword W (q(s)).
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There are many different error-correcting codes that can be used in our algorithm.

The Hamming code mentioned above is a good choice. Another simple alternative is

repetition code, in which way, we simply run the cardinality estimation algorithm r

times for each bit in the quotient q(s) and use the majority to decode q(s). In this case,

if the quotient length is 26, then the codeword length would be 26r. A similar idea was

used in Guan et al. (2009), where a large Bloom filter is used to bound the error in

the cardinality estimation. In our evaluation, we show that we can choose an efficient

error-correcting code to reduce the space and the running time, significantly.

Fig. 5.4a shows an example of the update step at a local router. In this figure, each

row corresponds to a layer and each square unit in a layer corresponds to a group which

is an instance of cardinality estimator. At each local router, we also add (s, d) to the

data structure for estimating Ft.

5.4.4 Merge

As indicated in the previous part of this chapter, we use the optimal cardinality esti-

mation algorithm (OPT) in Kane et al. (2010) to estimate the cardinality of destination

IPs of the hosts assigned to each group C[i, j], 0 ≤ i ≤ L − 1, 1 ≤ j ≤ G − 1. The

full optimal algorithm is quite complicated and involves using highly independent hash

functions and variable-bit-length array (VLA) to achieve optimal space and time in their

theoretical analysis. In our implementation, we use pair-wise independent hash functions

and simplified array of counters instead of complicated VLA.

Since we are going to merge multiple sketches collected from routers at the NOC

to generate a new sketch, it is important to show that our sketch is easily mergable.

By mergable, we mean that we can combine N same-size sketches at multiple routers

together to generate a new sketch of the same size, and use this newly generated sketch

to recover the super-spreaders; the recovered result is same as that by updating the

packets of the multiple streams into a sketch and recovering from it. It is obvious that
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by transmitting the sketches instead of the streams from the routers, we can save a lot

of effort.

It is straightforward to see that if we use same-size sketches, same set of κ hash

functions hj(x), 1 ≤ j ≤ κ and same error-correcting code at all the routers, and if the

cardinality estimator of each group is mergable, then our sketch is mergable. We briefly

describe the OPT algorithm and show that the data structure used in this algorithm is

mergable.

The first technique used in OPT is the balls-and-bins model. If we randomly throw

α different balls into β bins, then the number of non-empty bins γ is a random variable

that has the expectation E[γ] = β(1− (1− 1
β
)α). When α’s value is smaller than β, the

variance of γ can be bounded and the observed value of γ is highly concentrated around

E[γ] with a high probability.

The second technique used in OPT is adaptive sampling. Since it requires that the

number of distinct balls thrown into the bins is smaller than the number of bins in

order to bound the estimation error and the number of bins do not change, a proper

sampling rate needs to be used to always maintain a sampled set of distinct balls which

are thrown into the bins. The sampling rate decreases by half everytime the number of

distinct balls is larger than the number of bins. The sampling rule is as following: if the

current sampling rate is 1
2r

, then all the distinct balls whose lssb is not smaller than r

are sampled. In order to guarantee the randomness of the sampling process, a pair-wise

independent hash function is used to randomize the IDs of the distinct balls. The bins

are represented by an array of counters, each of which maintains the deepest lssb of the

distinct balls that are thrown into this bin/counter. As indicated in Kane et al. (2010),

the deepest lssb provides enough information to check if a bin is empty or not: if the

lssb maintained by a bin is not smaller than the current r, then this bin is non-empty.

We can see that if we have two instances of OPT with same size as well as hash

functions and want to merge them together, then we can check the current sampling
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(b) Merge multiple sketches at NOC.

Figure 5.4 An example of the Update and Merge steps. Left sub-figure shows the
update of a source and destination IP address pair into our sketch. Right
sub-figure shows the merge of multiple sketches collected from different
routers at the NOC to generate a new sketch.

rates of the two OPTs and choose the smaller sampling rate. For the corresponding

two arrays of counters, we can use the MAX operation to merge each pair of counters

together since the largest lssb is useful for each bin. In this way, we can create a new

instance of OPT that maintains the cardinality information of the two streams which is

maintained by the two original OPTs respectively, which means that the data structure

of OPT is mergable.

In our algorithm, at the end of each measurement interval, the routers will send their

sketches C[∗, ∗] to the NOC. And the NOC will merge all sketches together to get a

network-wide view of the network traffic. .The data structure for estimatingF can be

merged in the similar way. An example of the merge step is shown in Fig. 5.4b. In

this figure, we use 3-dimensional cubics to represent our sketches, and the additional

dimension corresponds to the array of counters in OPT algorithm.
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Figure 5.5 An example of the Query step. Left sub-figure shows cardinality test and
high-cardinality host recovery. Right sub-figure shows the false positive
filter which is based on the first group in each layer.

5.4.5 Query

Given a threshold θ, our goal is to identify all the hosts x with Dx > θ + εF . We

divide the whole query procedure into four basic steps and the brief steps are shown in

Fig. 5.6.

1. Threshold Computation: We use the merged OPT data structure at NOC for the

F (definition see table 5.1) estimation and denote the estimation result by F̂ . So

the threshold value we will use is θ + εF̂

2. Cardinality Test: We scan each group in the 2-dimensional L×G array one-by-one,

and test whether a high-cardinality host is mapped into the group. We create a

L×G binary matrix B[∗, ∗] to record the scanning results. For each group C[a, b],

the number of destinations in this group is estimated by the OPT algorithm. Let

F̂ [a, b] denote the estimated cardinality from C[a, b]. If

F̂ [a, b] > θ + εF̂ , (5.13)

we mark the bit at B[a, b] as 1, and otherwise 0.
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1: Query():
2: Get an estimation of total number of distinct destinations F̂ .
3: Given θ and ε, set T ← θ + εF̂ .
4: Initialize a 2-dimensional L×G binary array B[L,G] as all 0′s.
5: for i = 0 to L− 1 do
6: for j = 0 to G− 1 do
7: if C[i, j] > T then
8: Set B[i, j]← 1.
9: end if

10: end for
11: end for
12: for i = 0 to L− 1 do
13: Set y ← Decode(B[i, 1 . . . G− 1]).
14: for j = 1 to κ do
15: Set x← y × L+ i⊕ h′j(y).
16: Insert x into the candidate set X .
17: end for
18: end for

Figure 5.6 Algorithm for querying sketch and getting a candidate list of high-cardi-
nality hosts.

3. High-cardinality Host Recovery: Next, we try to recover the identities of high-

cardinality hosts from the binary matrix B[∗, ∗]. In ath layer, the bits from B[a, 1]

to B[a,G− 1] form a binary code that is close to a codeword W (q(x)) of a certain

unknown high-cardinality host x. By ”close”, we mean that due to the errors of

the cardinality estimation algorithm,the binary code B[a, 1 · · ·G − 1] may have

some bits different from the original codeword W (q(x)). We apply the decoding

algorithm of the error-correcting code, and recover an original message, denoted

by y, which is supposed to be q(x). By choosing a large enough codeword, we can

guarantee that the message y should be the same as the quotient q(x) with a high

probability.

Given y = q(x) and the layer index a which is a hash value generated by one of

the hash functions in hj(·), 1 ≤ j ≤ κ, if we know which hash function is used,

then we will be able to recover x. However, we do not know about this. Thus, we
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try each hash function one by one, and add all possible high-cardinality candidates

to a candidate set X . For each hash function hj(·), 1 ≤ j ≤ κ, we can recover a

candidate host xj from the message y as

xj = y × L+ a⊕ h′j(y). (5.14)

We can see that if we have y = q(x) for the high-cardinality host x, we will have

a = hj(x) and

xj (5.15)

= qj(x) · L+ hj(x)⊕ h′j(bx/Lc)

= bx/Lc · L+ (x mod L)⊕ h′j(bx/Lc)⊕ h′j(bx/Lc)

= bx/Lc · L+ (x mod L)

= x. (5.16)

And the high-cardinality host candidate xj would be added into the set X .We add

all high-cardinality candidates at each layer into the set X . An example is shown

in Fig. 5.5a.

4. False Positive Filters: Notice that even if we use the error correcting code to

remove cardinality estimation errors, depending on the feature of the code we use,

it is possible that there may be still some errors that are not corrected and the

recovered identities are not true high-cardinality hosts. In order to remove the false

positives, we use some techniques to filter out some of them.

Filter-1. At the last step, we try to remove false positives in the set X by using

the first column in B[∗, ∗]. For each candidate x ∈ X , we use the same set of hash

functions hj(·) to map them into the bits in the first column B[∗, 0], as shown in

Fig.5.5b. If x is a high-cardinality host, there should be more than half of the bits

in its hash positions that are 1s with a high probability. Therefore, if the number
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of 1 bits is smaller than half of the number of hash functions, we will remove x

from X .

Filter-2. If space allows, we use a Bloom Filter to maintain a sketch of the source

IP addresses we have seen in the stream to further reduce the number of false

positives. And for each recovered high-cardinality candidate, after it passes filter-

1, we will also check whether it is stored in the Bloom Filter: if yes, then we will

keep it in the candidate set X ; otherwise remove it.

Our algorithm will report the final result X as the set of the high-cardinality hosts.

Our algorithm follows a general procedure in the group testing problem, which has

been widely used in the coding theory. In the following theoretical analysis section, we

will analyze our algorithm as a channel-coding problem, which provides the proof for the

error bound. In addition, we prove that the running time to identify high-cardinality

hosts in our algorithm is sub-linear, which guarantees that our algorithm is practical for

the high-speed network monitoring.

5.5 Theoretical Analysis

In the previous section, we provide a description of our data structure and the al-

gorithms to update it and further identify the high-cardinality hosts from it. There are

many parameters in our data structure, which have not been determined exactly. In this

section, we provide a detailed theoretical analysis to help network engineers to choose

proper parameters based on their requirements. The main contribution of our work is

that we can identify high-cardinality hosts efficiently and accurately in a distributed

network monitoring system. Here, by ”efficiently” we mean that both the space and the

running time can be bounded by a polynomial function of the bit length of the host

identification, i.e. poly(logm); by ”accurately” we mean that we can report a list of

high-cardinality hosts with low false positive and false negative rates.
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5.5.1 Accuracy of Our Algorithm

For our algorithm to be an (ε, δ)-approximation algorithm that is defined in 3, our

algorithm have to guarantee the following three events to happen with high probability:

• Event 1: for each high-cardinality host x, there exists a layer that contains only

one high-cardinality host which is x, such that the group testing technique can

work in this layer.

• Event 2: if a layer contains a high-cardinality host x, our query algorithm would

recover it correctly.

• Event 3: if a recovered host x is a true high-cardinality host, our false positive

filter will not remove it.

Below we will analyze the probabilities that these three events happen respectively,

and the corresponding parameters to be used to guarantee these probabilities.

5.5.1.1 Event 1

Lemma 4. Given the number of hash functions κ = log(3
δ
) and the number of layers

L = 2
ε

log(3
δ
), for any high-cardinality host x, there exists a layer with Dx > θ+ εF , such

that only x is hashed into this layer and no other high-cardinality hosts are hashed into

this layer, with probability at least 1− δ
3
.

Proof. Each host is hashed by κ = log 3
δ

universal hash functions into L = 2
ε

log 3
δ

layers.

For a certain high-cardinality host x and the jth hash function hj(·), let a = hj(x) be the

layer that x is hashed into by hj(·). Since the hash function we use is universal which

means that each distinct host will be hashed to layer a by hj(·) with probability 1/L.

Let the sum of the destination cardinalities of hosts other than x that are hashed to layer

a by hj(·) is denoted by F−xj . Then the expectation of F−xj would be

E[F−xj ] =
F −Dx

L
. (5.17)
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Since each host will be hashed by κ universal hash functions, the expectation of the

sum of destination cardinalities of hosts other than x that are hashed to layer a by all

the hash functions would be

∑
j∈[1,κ]

F−xj =
κ

L
(F −Dx) =

ε

2
(F −Dx) <

εF

2
(5.18)

Based on Markov’s inequality, the probability that the sum of the cardinalities of hosts

other than x that are hashed to layer a is larger than εFt is smaller than 1
2
. Therefore,

layer a contains only one high-cardinality host x with probability at least 1
2
. By using

all log(3
δ
) hash functions, for a high-cardinality host x, the probability that there exists

a layer such that only one high-cardinality host x is hashed into this layer and no other

high-cardinality hosts are hashed into it is at least 1− δ
3
.

5.5.1.2 Event 2

Lemma 5. If there is only one high-cardinality host x hashed into a layer, our query

algorithm will recover x and add it into X with probability at least 1 − δ
3
, given the

length of the codeword G− 1 > 1
1−H(2/3)

log(m
L

), where H(p) is the entropy of a random

variable with Bernoulli distribution p.

Proof. For the high-cardinality host x, we suppose it is hashed by hash function hj(·) into

layer a. We encode its quotient q(x) into a codeword W (q(x)) with a bit length G− 1.

At the NOC, we will run the cardinality estimation algorithm and get the bit matrix

B[∗, ∗]. If the bth bit in W (q(x)) is 1, we will get 1 at B[a, b] with probability at least

p = 2/3 according to the OPT algorithm. Otherwise, we will get 0 with probability at

least p = 2/3. Therefore, we can treat B[a, b] as the received symbol through a channel as

shown in Fig.5.7. Based on the information theory, we can find a way to encode q(x) and

decode it from B[a, ∗] with a high probability. Due to the progress in the list-decoding

method Guruswami (2007), we can encode q(x) with a rate close to 1 −H(2/3) that is
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Figure 5.7 A Channel Model for Cardinality Estimation

the capacity of the channel in Fig.5.7, and recover q(x) in O(poly(log(m
L

))) running time

with a high probability.

Once we find the quotient q(x) of the high-cardinality host x, we can try all hash

functions and further recover this host x. Because each host is hashed into log 3
δ

layers,

the recovery procedure will fail with probability smaller than δ/3.

5.5.1.3 Event 3

Lemma 6. By using our false positive filter, our algorithm would report a true high-

cardinality host x that is returned by the query process with probability at least 1− δ/3.

Proof. With the same analysis in the proof of Lemma 5, for a true high cardinality host

x, for j = 1, . . . , κ, in the false positive filtering procedure, the bit B[hj(x), 0] is 1 with

probability at least 2/3. Therefore, the probability that the number of 1s in these bits

is larger than 1
2

log(3
δ
) is at least 1− δ/3. Thus, a true high-cardinality host x will pass

the filter with probability at least 1− δ/3.

5.5.1.4 Final Results

Based on the three events and the union bound, we have the following result:

Theorem 3. A high-cardinality host x withDx > θ+εF can be reported with probability

at least 1− δ.

The size of the candidate hosts |X | can be bounded by the following lemma.
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Lemma 7. The number of candidate hosts in our algorithm is bounded by 2
ε

log2(3
δ
).

Proof. According to the query algorithm in figure 5.5, we have L = 2
ε

log 3
δ

layers and

we at most recover κ = log 3
δ

candidate hosts from each layer. Therefore, the number of

candidate hosts can be bounded by 2
ε

log2 (3
δ
), which is also a loose upper bound of the

number of false positives.

5.5.2 Space and Time

Next, we analyze the space and running time of our algorithm.

Theorem 4. Our data structure requires

O(
1

ε
(

1

ε2
+ logm) log(

1

δ
) log(

εm

log(1/δ)
)) (5.19)

bits.

Proof. There are O(2
ε

log 3
δ
) layers in our sketch. In each layer, there are O(log εm

log(1/δ)
)

groups. And each group requires O( 1
ε2

+ logm) bits. By multiplying them tougher, we

can get our result. Other parts in our algorithm will require a space much smaller than

the sketch C[∗, ∗].

Because the cardinality estimation can be done in O(1) running time for both update

and query, the performance of our algorithm is mainly determined by the identification

of high-cardinality hosts at the NOC.

Theorem 5. The update running time at each monitor is

O(log(
1

δ
) log(

εm

log(1/δ)
)). (5.20)

The merge running time and the query running time at the NOC are

O(
1

ε3
log(

1

δ
) log(

εm

log(1/δ)
)) (5.21)



www.manaraa.com

80

and

O(
1

ε
log(

1

δ
) logO(1)(

εm

log(1/δ)
) +

1

ε
log3(

1

δ
)) (5.22)

respectively.

Proof. At each monitor, we use O(log(1
δ
)) hash functions to map each host to layers.

For each layer, we need to update at most O(log( εm
log(1/δ)

)) groups. But each group only

requires O(1) running time. Therefore, the update running time at a local monitor is

O(log(1
δ
) log( εm

log(1/δ)
)).

In each group, there are O( 1
ε2

) counters. And there are totally O(1
ε

log(1
δ
) log( εm

log(1/δ)
))

groups in our sketch. Therefore, the running time for merging sketches in our algorithm

is O( 1
ε3

log(1
δ
) log( εm

log(1/δ)
)).

To compute the binary matrix B[∗, ∗], we only need O(1
ε

log(1
δ
) log( εm

log(1/δ)
)) running

time. To recover a high-cardinality host in each layer, we need O(logO(1)( εm
log(1/δ)

)) running

time for the list-decoding algorithm Guruswami (2007), and O(log(1
δ
)) running time to

map quotient back to the host identification. Thus, we need O(1
ε

log(1
δ
)(logO(1)( εm

log(1/δ)
)+

log(1
δ
))) running time to get the candidate set X .

Because there are at most O(1
ε

log2(1
δ
)) candidates in X , the algorithm to filter false

positives will require O(1
ε

log3(1
δ
)) running time. Therefore, the running time for the

query can be bounded by O(1
ε

log(1
δ
) logO(1)( εm

log(1/δ)
) + 1

ε
log3(1

δ
)).

Based on the above results, we can identify high-cardinality hosts with a running

time bounded by a polynomial function of the bit length of the host identification, i.e.

O(poly(logm)). And the space requirement of our algorithm is close to the lower bound

of the compress sensing Do Ba et al. (2010).

There is a close relation between our reversible data structure and the compressed

sensing problem Candes et al. (2006); Donoho (2006); ric (). For a signal f , its compressed

measurement equals to Mf , where M is a carefully chosen l × m matrix with l � m.

The group Mf is called as the measurement group, and can be used recover f beyond the
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Figure 5.8 Cumulative Distribution of the destination cardinalities of some experi-
mental data sets used in our experiment.

information bound. The high-cardinality host identification introduces a new challenge

for the compressed sensing. Besides the noises in the original signal f , there are also

noises in the measurement group Mf . In other words, even if there is no noise in f , we

still have some errors in the measurement group Mf . This is because there is no efficient

data structure that can be used to estimate the cardinality without the approximation or

the randomness. We show that the traditional methods using the error-correcting code

can be used to recover a sparse signal under the noises in the measurement group Mf .

5.6 Performance Evaluation

5.6.1 Experiment Settings

We use false positive rate and false negative rate to evaluate our algorithm. False

positives are source IP addresses which are recovered by our algorithm but not true

high-cardinality hosts. False negatives are those source IP addresses which are true high-

cardinality hosts but not recovered by our algorithm. False positive rate is calculated

as the number of false positives divided by total number of source IP addresses in the

data; false negative rate is the number of false negatives divided by total number of true
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Figure 5.9 Precision of different versions of our algorithm. δ = 0.15. WittyWorm
trace is used.

high-cardinality hosts.

WittyWorm trace Rea () is used to evaluate our algorithm. The WittyWorm data are

collected during the breakout of the Witty worm. It contains the packages sent by the

infected hosts to a /8 subnet which are all not-in-use IP addresses. Since these traces are

collected from all over the world and are very large, we use part of the traces to simulate

the break out of the worm in a subnet, and try to detect the high-cardinality hosts in

the subnet. We extracted 10 data sets from the WittyWorm trace, and some cumulative

distributions of the destination cardinality of the source IP addresses in the data sets

are shown in figure 5.8. For each test, we run our algorithm on each data sets at least

50 times and use the average results.

5.6.2 Evaluations

5.6.2.1 Comparisons of Different Coding Methods

In this experiment, we test the precision of three versions of our algorithm which are

differentiated by the coding method used for the source IP address’s quotient. The three

different versions are denoted as no-code, rep-3 and Hamming. As the name indicates,
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no-code means we will not encode the quotient, and for each bit of the quotient, it

will be updated into one group in each selected layer; rep-3 means that for each bit

of quotient, it corresponds to 3 repeated bits in the code word and it will be updated

into 3 corresponding groups in each selected layer; Hamming means that we encode the

quotient with Hamming code and each bit of the code word will be updated into one

group in each selected layer. For this test, we first select the layer number L. When L

is fixed we know the length of the source IP’s quotient, which determines the number of

groups to be used in each layer according to the coding method used.

The experiment results are shown in Fig. 5.9. We can see that when the layer number

is fixed, the rep-3 and Hamming versions are performing better than the no-code version

in the sense that the previous two versions are generating less false positives and false

negatives. This is what we expected that the error-correcting code can help us to correct

some of the errors caused by cardinality estimation, recover more false high-cardinality

hosts, and reduce the number of false positives. However, when using error-correcting

codes, we are using more groups in each layer comparing with no-code version, which

means that we are using more space to get higher accuracy. On the other hand, when

the layer number increases, the false positive rate and false negative rate decrease, which

conforms to our algorithm design that when we are using more layers, we will have less

chance to get collisions that two or more high-cardinality hosts are stored in the same

layer, and will have more chance to filter out false positives using Filter-1.

5.6.2.2 False Positive Filter-2

In this experiment, we compare the condition when only Filter-1 is used to filter false

positives and the condition when both Filter-1 and Filter-2 are used. In this test, we

used 216 bits for the Bloom Filter. The results are shown in table 5.2. From the results

we can see that Filter-2 reduces the false positive rate, which makes sense since we are

using extra space for Filter-2 to store the information of source IP addresses which have
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Table 5.2 False positive rates for different ε under condition when only Filter-1 is
used and condition when both Filter-1 and Filter-2 are used. Hamming
code version of our algorithm is used. δ = 0.15.

ε Filter-1 Filter-1+Filter-2

0.0045 0.004072 0.002837
0.0085 0.007018 0.002951
0.0170 0.007322 0.004138
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Figure 5.10 Precision of our algorithm under different δ and L values. WittyWorm
trace is used.

been observed in the data. When our main algorithm recovers high-cardinality hosts

using the group testing methods, it may generate some candidates that have never been

observed in the data, which could be removed by Filter-2.

5.6.2.3 Error Bound δ

In this experiment, we evaluate the Hamming version of our algorithm under different

values of δ to see if the false positive rate and false negative rate can achieve the expected

error bound δ. We tested our algorithm for δ values ranging from 0.05 to 0.40 under

different values of L for different values of 512, 1024, 2048. When δ and L are fixed,

ε can be determined accordingly which will also determine the threshold for the high-

cardinality hosts.
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Figure 5.11 Comparing precision of sampling algorithm and our algorithm under
different δ values. WittyWorm trace is used.

The evaluation results are shown in Fig. 5.10. We observe that the false positive rates

are much smaller than the error bound δ which means that our algorithm will report a

small number of false positives than the expected bound. We also observe that the false

negative rate is also bounded by the success bound δ which means that our algorithm

can report the expected portion of the true high-cardinality hosts.

5.6.2.4 Compare with Sampling Technique

We implemented the superspreader detection algorithm in paper Venkataraman et al.

(2005) which uses one-level sampling to estimate and capture superspreaders in the net-

work packets. In their algorithm, each unique source-destination IP address pair is

sampled with a pre-selected sampling rate and stored in a hash table. For each sampled

source, its destination cardinality is counted using the sampled packets and finally es-

timated according to the sampling rate. We implemented the sampling process using a

pair-wise independent hash function which maps each 64-bit ID (source and destination

IP address pair) universally onto the [0, 1) range and sample the pair if its hash value

is smaller than the sampling rate. We compare Hamming code version of our algorithm
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with this sampling algorithm to see which one is performing better when the expected

detection rate δ is fixed.

We can see from Fig. 5.11a and Fig. 5.11b that the higher the sampling rate is, the

higher the false positive rate is and the lower the false negative rate is, which makes

sense since the higher the sampling rate is, the more packets will be sampled and more

non-superspreaders and superspreaders will be kept. There would be a trade-off between

the false positive rate and false negative rate when using sampling technique. Another

point is that the higher the sampling rate is, the more space is needed to store the

packet information and the source IP addresses’ destination cardinality. Also the space

increases as the data stream size increases which is not desirable in large amount of

distributed data streams. However, our algorithm has both lower false positive rate and

false negative rate than the sampling technique, which due to the compact sketch we

use to store the information and the false positive filters to remove false positives. Also

our algorithm uses fixed space to store the information which does not change when the

data stream size changes.

5.7 Conclusion

In sum, we provide a mergable and reversible data structure for the high-cardinality

host detection. Our solution is a general solution that can be easily extended to other

traffic features or different application domains. We also provide a detailed theoretical

analysis of our data structure, which can help engineers to determine the parameters

in practice. The high-cardinality host identification also introduces a new challenge for

the compressed sensing problem, which will attract more research interests in the future.

We hope our work can improve the practice of the traffic monitoring and the anomaly

detection in the Internet.
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CHAPTER 6. SUMMARY AND DISCUSSION

In this dissertation, we have provided new solutions for hot items identification in

chapter 3, distinct element counting in chapter 4 and superspreader identification in chap-

ter 5 in distributed dynamic data streams. Our algorithms could be used for detecting

network attacks and anomalies such as DDoS attacks, service outages, worm spread-

ing, etc. In our algorithms, we combine basic techniques such as hash function based

randomization, adaptive distinct sampling, multi-dimensional counter-based sketching,

group testing and statistical estimations to design highly compact data structures which

use small space and constant query/update time and are suitable for network monitor-

ing applications. Our theoretical analysis and data-based experimental evaluations have

shown that our solutions work better than previous ones and give promising results.

Our work in this dissertation only resolves a small part of data streaming problems for

network monitoring. There are more work to be done in the future to solve other practical

problems. For example, we usually assume that the size of the data we are processing is

known as a prior such that we could design our algorithms with the best parameters to

minimize space and time, but in practice sometimes the data size is unknown or changes

often, in which case more flexible data streaming algorithms are preferred to adapt to

the unknown data size. Another practical issue is that there are tons of data streaming

algorithms that deal with different problems under variant conditions. It would be

very useful to create a generalized data streaming framework that combines or supports

different types of problems which is also easy to setup and tune parameters, such that

it can be used as a straight-forward component in network monitoring tools.
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Network monitoring is becoming more and more challenging because of the growth of

internet. One example is the concept of IoT (Internet Of Things), which brings physical

devices other than computers and mobile phones into the infrastructure of internet. One

of the great examples of IoT is smart home where home devices such as fridges, cameras,

switchers, temperature controllers are crafted with chips and smart firmwares. These

home devices are connected to the internet and can be accessed remotely by the home

owner for convenient control. They are smart like computers and mobile phones, but

they are not protected by anti-virus softwares like computers and mobile phones which

makes them more vulnerable to network attacks. Another property which makes them

great target of network attacks is that they stay online forever and are always ready to

be compromised by attackers. In the late 2016, a massive DDoS attack against a DNS

service provider which brought down piles of internet services was just started from a

huge amount of IoT devices controlled by a botnet. This attack opens a new world for

DDoS attack that is based on IoT which is easy to break into, stays online all the time

and has more capacity than computers and mobile phones (in the future).

To combat with ever-evolving network attacks which utilize new internet concepts,

we would have to learn the new features of the evolving internet and keep up with the

smart attackers.
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